Open Architectures to Accelerate Industry Growth

Bob Brennan
VP, Customer Solutions Engineering, Intel® Foundry Services
Legal Notices and Disclaimers

Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

All product plans and roadmaps are subject to change without notice. Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Code names are often used by Intel to identify products, technologies, or services that are in development and usage may change over time. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. This document contains information on products and/or processes in development.
Moore’s Predicted “Day of Reckoning”

“It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected.”

-Gordon E. Moore

1: “Cramming more components onto integrated circuits”, Electronics, Volume 38, Number 8, April 19, 1965
System on Chip -> System of Chips

“Catalyzing the Impossible: Silicon, Software, and Smarts for the SysMoore Era” – Dr. Aart de Geus

Google Cloud Blog*: A Chiplet Innovation Ecosystem for a New Era of Custom Silicon

What’s needed:

• Modularity
• Optimized Silicon and Package
• Open Standards, examples:
 ▪ IO
 ▪ Protocols
 ▪ Security
 ▪ Management

Growing Demand for AI

Growing Demand for Video

(YouTube, Live Streaming)

*https://cloud.google.com/blog/topics/systems/open-chiplet-ecosystem-powering-next-era-of-custom-silicon
Intel® Vision: The “Chiplet Revolution”

Open Chiplet: Platform on a Package

- Customer IP and Customized Chiplets
- High-Speed Standardized Chip-to-Chip Interface (UCIe)
- 20X I/O Performance at 1/20th Power*
- Advanced 3D Packaging

*relative to PCIe G5 x16
Motivation: Cost & Manufacturing Optimization

Monolithic Chiplet

300 mm²

79-83 mm² ea.

Input Variables:
- Die Area
- # of Chiplets
- Wafer Cost
- Defect Density
- Package/Assembly/Test
- Known Good Die
- Die Area Tax & Overhead

"Heterogeneous Integration of Chiplets: Cost and Yield Tradeoff Analysis"

Source: Intel® Model

*Probabilistic trend by 1std dev
Motivation: Process Technology Optimization

- Logic/Memory
- IO
- RF
- Mixed-signal

Source: Intel®

Density
Leakage
Speed
High-Voltage
Passive

DAC 2022
Motivation: AI Memory BW/Power Gap

- Insatiable Memory Bandwidth
- The energy efficiency gap is getting bigger

Source: Intel®
Motivation: R&D Cost and Product Velocity

Move from Exponential -> Linear with modularity and reuse
Motivation: Optimize System Level High Speed IO

Source: Intel®
Technology Needed

Some EDA Challenges
New Development Model: System on Chip -> System of Chips

- Platform & SW/HW Co-Design
- Architecture Perf. Modeling
- RTL Design & Verification
- Synthesis
- Auto Place & Route (APR)
- Mask Set
- First Silicon
- Shipped Products

Architecture

IP/SOC Design

System Lifecycle Management

Post-Si & Test
Architecture: Optimal Silicon Partitioning

Comparative/pairwise analysis for any homogeneous or heterogeneous implementations
Shifting Left with SW/HW Co-Design

SoC Development

Virtual Prototyping

Emulation

Prototyping

Incremental Approach

SW Development

Save 3 - 6 months

Shift Left

Source: Synopsys
Shifting Left with SW/HW Co-Design
Ex. Intel® Simics® Virtual Platforms

System Level Features Support
- Scripting
  ```bash
  $ foo
  $ bar
  ```
- Fault injection & control
- Matches hardware functionality
- Multicore & -machine multithreading
- Modular & user-extensible

Real-world Connections
- Mouse, keyboard, serial, network, PCIe

Integration of 3rd party entities
- External SW Tools
 - Intel System Debugger, GDB, WinDBG, Lauterbach, ...
- Other Simulators
 - VCS, Cadence, Synopsys, Matlab, C, ...
- RTL Emulation / FPGA
 - Synopsys HAPS & ZeBu, Intel® systems, ...

Simics®
Architecture: System of Chips Performance Modeling
Ex. Intel® CoFluent™ Technology

Execute real SW workloads

Shape Micro-architectural details
Architecture: System Power & Thermal Optimization

Ex. Intel® Docea™ – System Thermal Analysis -> Quick Iteration (Arch, Design, Power, Thermal)
Design: Standardized IP: HIP and SIP

Ex. UCle Open Interconnect

INITIAL FOCUS

- Physical Layer: Die-to-Die I/O with industry leading KPIs
- Protocol: CXL/PCIe for near-term volume attach
- Well-defined specification: ensure interoperability & evolution

FUTURE GOALS

- Additional protocols (ex. CHI)
- Advanced chiplet form-factors
- Chiplet management
- Security
- And much more!
Design: DTCO & STCO Silicon + Package

PPAC Silicon Optimization, Package-Silicon Optimization

Foveros Omni enables flexible design with maximum performance

- TSV penalty minimized
- Power and IO optimization
- High bandwidth interconnects

Foveros Direct direct copper-to-copper bonding which enables low resistance interconnects

- Bump density increases to 30K/mm²
- Functional block level partitioning

Test wafer with Foveros Omni
Design: Power Delivery

Power to the Platform – clean & efficient

Distributed Power Delivery Droop

Optimize Voltage Regulators

Distribute Power Delivery

Optimized
Power Management IC (PMIC)
Post-Si: Platform Validation and Debug

New Post Silicon Multi-Die Tools/Flows/Methods, new Design for Debug Architecture
Post-Si: Manufacturing and Test

New Test Architecture & Capabilities: Known Good Die -> Known Good Multi-Die
Test & Life Cycle Management

Implementation
- DFT Logic

Data Acquisition
- Scan chain results

Data Export
- Scan shift, JTAG, USB, PCIe

Analytics
- Scan diagnostics

<table>
<thead>
<tr>
<th>Test</th>
<th>System Lifecycle Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFT Logic</td>
<td>Embedded In-Chip Monitors</td>
</tr>
<tr>
<td>Scan chain results</td>
<td>Process, Voltage, Temperature & Path Margin</td>
</tr>
<tr>
<td>Scan shift, JTAG, USB, PCIe</td>
<td>iJTAG, JTAG, Scan, USB PCIe, CPU</td>
</tr>
<tr>
<td>Scan diagnostics</td>
<td>Manufacturing reporting and production control</td>
</tr>
</tbody>
</table>

Source: Synopsys

DAC 2022
Chiplets

Industry Case Studies & Representative Applications
Case Study: Intel® Client, Lakefield 3D Foveros

Ex. Market Segmentation (GFX, Memory), Process Optimization

<table>
<thead>
<tr>
<th>Y SKU Gen-1</th>
<th>Y SKU</th>
<th>LKF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>20.5x16.5</td>
<td>26.5x18.5</td>
</tr>
<tr>
<td>Memory</td>
<td>LP3 11x11.5</td>
<td>LP4-4x 12.5x12.5</td>
</tr>
</tbody>
</table>
Case Study: Intel® HPC - Ponte Vecchio

Ex. Complexity Management, Process Optimization
IO Optimization: Intel® Optical

Ex. Network Optimization through Modularity
Sensor Case Study: Radar Beamforming Application
IO Case Study: Disaggregated PCIe & Memory

Ex. Optimization of Process (ex. Analog), Supply Chain
IO Case Study: Possible HBM Architecture

Optimize: AI Bandwidth/Power Density, AI Thermals
Server Case Study: Multi-core uServer

Ex. Multi-Protocol Architecture: CXL/UCie and CHI/UCie
Networking/Storage Case Study: IPU/DPU

Ex. Multi-Protocol Architecture: AXI/UCie; Networking Modularity

- AXI/UCie
- Network On Chip (AXI)
- Shared Cache
- RDMA/CXL Ethernet
- ETHERNET 224G
 - Copper
 - Optical

- Manageability & Security
- CPU Sub-system (8–64 core)
- Storage Accelerators

- RISC-V arm
AI Case Study: Caching Inference Architecture

Ex. DMA, Asymmetric Coherence, Symmetric Coherence

- CXL.IO
- CXL Cache
- Fully Symmetric Cache

Scheduler

Execution Core

AI | Stream Processors

- Instruction Cache
- Data Cache

L2 Cache

L3 Cache

DDR5 or LPDDR5

UCle

DAC 2022
Summary

- Industry Vision – we are at an inflection point
- Technical Challenges – die size, process, IO, and R&D $ optimization
- Technology Needed – RISC-V open architecture, new CAD tools in Architecture, Design, and Debug & Test
- Commercial Case Studies – many new emerging architectures, it’s just the beginning, let’s collaborate!
Thank you