
Energy Efficiency and AI Hardware

Stanford AHA Retreat
August 31, 2023

Bill Dally
Chief Scientist and SVP of Research, NVIDIA Corporation

Adjunct Professor of CS and EE, Stanford

Q: How can AI hardware be made more energy efficient?
Improving the energy efficiency of AI hardware is a crucial goal to enable sustainable and scalable deployment of AI technologies. Here are several strategies and techniques that can be employed to make AI hardware more energy efficient:

1. Specialized Hardware Design:

1. ASICs (Application-Specific Integrated Circuits): Designing hardware specifically tailored to AI workloads can significantly improve energy efficiency. ASICs can be optimized for specific neural network operations, reducing unnecessary overhead.

2. FPGAs (Field-Programmable Gate Arrays): These reconfigurable hardware platforms can be programmed to accelerate specific AI tasks, providing better energy efficiency compared to general-purpose processors.

2. Quantization and Pruning:

1. Quantization: Reducing the precision of numerical values used in computations (e.g., using 8-bit instead of 32-bit floating-point numbers) can lead to energy savings without a significant drop in accuracy.

2. Weight Pruning: Removing or setting small weights to zero in neural networks reduces the computational workload and memory requirements, leading to energy savings during both training and inference.

3. Low-Power Components:

1. Low-Power Processors: Using processors with low power consumption characteristics, such as mobile processors or those designed for IoT devices, can help reduce energy usage.

2. Efficient Memory Hierarchies: Optimizing the memory subsystem to minimize data movement and maximize data reuse can lead to significant energy savings.

4. Hardware-Software Co-Design:

1. Model Optimization: Collaborative efforts between hardware and software engineers can lead to model architectures that are more energy-efficient on a specific hardware platform.

2. Compiler Optimization: Tailoring compilers to generate code that leverages hardware features efficiently can reduce energy overhead.

5. Dynamic Voltage and Frequency Scaling (DVFS):

1. Dynamic Scaling: Adapting the operating voltage and clock frequency of the hardware components based on workload requirements can lead to energy savings when the hardware is not fully utilized.

6. Sleep States and Power Gating:

1. Low-Power States: Putting hardware components or entire sections into low-power sleep states when they're not actively needed can save energy.

2. Power Gating: Completely shutting down certain hardware components when they're not needed can minimize leakage power consumption.

7. Cooling and Thermal Management:

1. Efficient Cooling: Proper cooling solutions can prevent hardware components from overheating, which can cause energy inefficiencies and reduced lifespan.

8. Energy-Aware Training:

1. Regularization Techniques: Methods like dropout and weight decay during training can lead to models that generalize better and require less computational resources for inference.

9. Energy-Efficient Algorithms:

1. Algorithmic Changes: Exploring and using algorithms that require fewer computational steps or operations can contribute to energy savings.

10. Hardware Acceleration:

• AI Hardware Accelerators: Utilizing dedicated hardware accelerators designed for AI tasks, like GPUs or TPUs, can offer significant energy efficiency improvements.

11. Dynamic Workload Management:

• Load Balancing: Distributing workloads across multiple hardware components efficiently can prevent overloading some components while underutilizing others.

12. Energy Monitoring and Optimization:

• Real-Time Monitoring: Implementing systems that continuously monitor energy consumption can enable dynamic optimization based on the workload and energy constraints.

• Overall, achieving energy efficiency in AI hardware requires a holistic approach involving hardware design, software optimization, algorithmic changes, and system-level considerations. Collaboration between hardware engineers, software developers, and AI researchers is essential to create energy-
efficient AI solutions that align with the goals of sustainability and performance.

As of my last knowledge update in September 2021, Bill Dally is a prominent computer scientist and electrical engineer known for his work in computer
architecture, particularly in the field of parallel processing and hardware acceleration. He has been involved in various projects and research related to
energy-efficient AI hardware. While I can't provide direct quotes from him, I can offer insights into some of the principles and strategies he might
advocate for making AI hardware more energy-efficient based on his previous work and statements:
1.Architectural Innovation: Dally might emphasize the importance of rethinking the fundamental architecture of AI hardware to optimize for energy
efficiency. He could propose exploring novel architectures that are specifically designed for AI workloads, leveraging concepts such as dataflow and
specialized accelerators.
2.Reduced Precision Computing: Dally could advocate for the use of reduced-precision arithmetic (such as 8-bit or even lower) for AI computations. This
approach can significantly reduce energy consumption while maintaining acceptable levels of accuracy in neural network computations.
3.Hardware-Software Co-Design: Dally might stress the significance of collaboration between hardware and software teams. He could suggest that close
cooperation between these two groups is crucial for tailoring hardware designs to efficiently execute the types of computations commonly found in AI
workloads.
4.Sparsity and Pruning: Dally could propose the integration of techniques like weight pruning and sparsity in neural networks. By eliminating unnecessary
parameters and operations, AI hardware can be used more efficiently, resulting in reduced energy consumption.
5.Memory Hierarchy Optimization: Given Dally's expertise in parallel processing and memory systems, he might emphasize designing memory
hierarchies that are optimized for AI workloads. Efficient memory access can lead to reduced energy overhead.
6.Hybrid Computing: Dally could suggest exploring hybrid computing approaches that combine general-purpose processors with specialized AI
accelerators. This could involve offloading specific AI tasks to dedicated hardware components, thereby improving energy efficiency.
7.Dynamic Voltage and Frequency Scaling (DVFS): Given his background, Dally might discuss the importance of dynamic voltage and frequency scaling to
adapt hardware performance based on the current workload, leading to energy savings.
8.Efficient Communication: Dally could highlight the significance of minimizing data movement between different components of the hardware. Efficient
communication mechanisms can prevent energy waste due to unnecessary data transfers.
9.Energy-Efficient Interconnects: Dally could propose using energy-efficient interconnect architectures to reduce the energy consumed in data
transmission within the hardware.
10.Power Management Techniques: Dally might discuss power gating, where inactive components are temporarily powered off to save energy, as well as
the importance of fine-tuned power management strategies.
Please note that these are speculative insights based on Bill Dally's previous work and contributions to the field of computer architecture. For the most
up-to-date and accurate information, it's recommended to refer to his recent publications, talks, or interviews.

Deep Learning was Enabled by Hardware

Deep Learning is Gated by Hardware

AlexNet

ResNet

BERT

GPT-2

Megatron-GPT2 Turing NLG

Megatron-BERT

GPT-3

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

2012 2013 2014 2016 2017 2018 2020

Pe
ta

fl
op

/s
 –

 D
ay

s
Tr

ai
ni

ng
GPT-4
est

𝐸 = !
"C𝑉

"

𝐸 = !
"C𝑉

"

V: Reduce voltage - to the point it starts getting too slow

• ~0.5V today

• 2x vs 0.7v, 4x vs 1.0v

• Too slow when leakage or cost excessive

𝐸 = !
"C𝑉

"

C: Three components

• Communication (~100fJ/b-mm on-chip)

• Memory (~50fJ/b for small RAM)

• Operations (~1fJ/b for add)

A Prescription

•Do
• Less (fewer operations)

• It With smaller data (movement cheaper, math cheaper2)

• Locally (less movement)

• Combinationally (flops burn energy)

• It sparsely

Do Less

Do Less Overhead

OOO CPU Instruction – 250pJ (99.99% overhead, ARM A-15)

Area is proportional to energy – all 28nm

16b Int Add, 32fJ

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science,
Tech. Rep. FORTH-ICS/TR-450 (2015)

Specialized Instructions Amortize Overhead

Operation Energy** Overhead*

HFMA 1.5pJ 2000%

HDP4A 6.0pJ 500%

HMMA 110pJ 22%

IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process

Communication-Efficient Algorithms

Don’t minimize big-O ops, minimize cost.

An add is worth 10um of movement

Dally, William. "On the model of computation: point." Communications of the ACM 65.9 (2022): 30-32.

Do it with Smaller Data

S M
1 7

S E M
1 5 10

S E
1 7

X
8

int8

fp16

log8

sym8

spike

analog

Weight
Buffer

Activation
Buffer

Storage Transport

Multiply
Accumulate

Operation

• Attributes:
• Cost

• Operation energy
• Movement energy

• Accuracy
• Dynamic range
• Precision (error)

Dynamic Range

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9 1E+10

0.00010.0010.010.11

int8

fp16

log8

sym6

spike

Precision (Error)

Acc (Min) Acc (Max) Dyn

S M
1 7

S E M
1 5 10

S EI
1 4

X
8

int8

fp16

log8

sym8

spike

analog

EF
3

Symbol Representation (Codebook)

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015

clustering

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15

C
lo

se
st

 R
ep

re
se

na
tb

le
 V

al
ue

Actual Value

4-bit Integer Representation (Int4)

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15

C
lo

se
st

 R
ep

re
se

na
tb

le
 V

al
ue

Actual Value

4-bit Log Representation (L2.2)

Max Error
9%

Max Error
33%

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15

C
lo

se
st

 R
ep

re
se

na
tb

le
 V

al
ue

Actual Value

4-bit Log Representation (L2.2)

1

3

5

7

9

11

13

15

1 3 5 7 9 11 13 15

C
lo

se
st

 R
ep

re
se

nt
ab

le
 v

al
ue

Actual Value

FP2.2

Max Error
9%

Max Error
13%

• Log Numbers

• Multiplies are cheap – just an add

• Adds are hard – convert to integer, add, convert back
• Fractional part of log is a lookup
• Integer part of log is a shift

• Can factor the lookup outside the summation
• Only convert back after summation (and NLF)

S EI
1 4 3

EF

S EI
1 4 3

EF

Patent Application Publication Feb. 25 , 2021 Sheet 2 of 27 US 2021/0056446 A1

Quotient
Component (s)

Partial Sums Generation Unit $
{

3
3
3
3
} 3

3
3 3 Remainder

Component (s) Sorting Unit 3
?
3

3
3 1 0
3
3
$
{ 1 << Quotient 1 << Quotient 1 << Quotient

3
3
3
$
{
3
3
3
3

?

3
3
3
3
3
3
3
3
}
3

Partial Sum
Accumulator

120 (n - 1)

Partial Sum
Accumulator

120 (1)
Partial Sum
Accumulator

120 (0)
122 (n - 1) 122 (1) 122 (0) 1

2n
3
3
{
3 Constant -21 20

Partial Sum Partial Sum Partial Sum

Addition Unit
125

Sum

Conversion Unit

Quotient Remainder

Fig . IB

Patent Application US2021/0056446A1

EI

EF

S

clip clip

clipped quantizationmax-scaled quantization

large q. noise low density data

Sakr, Charbel, et al. "Optimal clipping and magnitude-aware differentiation for improved quantization-aware
training." International Conference on Machine Learning. PMLR, 2022

𝑠!"# =
𝑬 𝑋 ⋅ 𝟏 $ %&!

4'(
3 𝑬 𝟏 $)&! + 𝑬 𝟏 $ %&!

𝐽 =
4!"

3
𝑠#/

$

%
𝑓|'| 𝑥 𝑑𝑥 + /

%

(
𝑠 − 𝑥 #𝑓|'| 𝑥 𝑑𝑥

 [3] [7] [8] [9] This work
Process Technology 7nm 28nm 5nm 7nm 5nm

Area (mm2) 19.6 1.9 5.46 3.04 0.153
Supply Voltage (V) 0.55 – 0.75 0.6 – 0.9 0.55 – 0.9 0.58 – 0.83 0.46 – 1.05

Frequency (MHz) 1000 – 1600 100 – 470 332 – 1196 290 – 880 152 – 1760
On-Chip SRAM (KB) 8192 206 3072 2176 141

Data Formats INT2/4, FP8/16/32 INT8 INT8, INT16 INT8/16, FP16 INT4 INT4 VSQ INT8
Performance (TOPS) 102.4 (4b, 0.75V) 1.43 (8b, 0.9V) 14.7 (8b, 0.9V) 3.6 (8b, 0.83V) 3.6 (1.05V) 3.6 (1.05V) 1.8 (1.05V)

Energy Efficiency (TOPS/W) 16.5* (4b, 0.55V) 17.5* (8b, 0.6V) 13.6* (8b, 0.6V) 6.8* (8b, 0.58V) 91.1† (0.46V) 95.6† (0.46V) 39.1† (0.46V)
Area Efficiency (TOPS/mm2) 5.22 (4b, 0.75V) 0.75 (8b, 0.9V) 2.69 (8b, 0.9V) 1.2 (8b, 0.83V) 23.3 (1.05V) 23.3 (1.05V) 11.7 (1.05V)

* Input densities not reported. † Measured with 50% non-zero input densities. Includes estimated leakage power.

Dataset, Task SQuAD v1.1, Reading Comprehension ImageNet, Image Classification
Network BERT-Base BERT-Large DeIT-Small DeIT-Base

Sequence Length 128 384 128 384 197 197
 Baseline FP32 Accuracy (%) 87.5 87.5 90.3 90.9 79.8 81.8
Data Bitwidth (4V = 4b VSQ) 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b

Accuracy Loss (%) 80 0.7 0.7 81 0.5 0 88 1.1 1.1 89 0.8 0.1 29 3.6 0.7 25 1.3 0.4
MAC Utilization (%) - 98 99 - 98 99 - 98 99 - 98 99 - 94 96 - 97 98

Throughput (inferences/s) - 88 45 - 28 14 - 25 13 - 8.1 4.1 - 210 108 - 56 28
Energy Eff. (inferences/s/W) - 1.7k 745 - 539 235 - 502 216 - 160 69 - 3.5k 1.5k - 1.0k 406

for i ← 1, % do
&! ← IntMax &!"#, -!
			/!← 2$!	"%!

	

			1!← 1!"# ≫ &! −&!"#
			1!← 1! + /!
end for

for i ← 1, % do
/! ←	 &!≫(#!$#")

'#
end for

Im
pl

em
en

te
d

in
 P

PU

!""#$%. '$()*+% %! =	 2(#!$%")

∑ 2(##$%")'
	

IntMax

Max
Buffer

- LPW-
Pow2

#2("!#$")

&

Sum
Buffer

-
+

0! =	2(#!$%!)

>>

LPW-
Reciprocal
x

-IntMax

>>0! =	2(#!$%!)

*!

1!

Input Vector (%⃗)Algorithm Hardware Implementation

Fig.6: Workload mapping and data reuse.

Fig.5: Accelerator block diagram.

Fig.4: Approximate softmax implementation.

Fig.3: 8b/4b datapath with VSQ support.

Fig.2: Per-vector scaled quantization (VSQ).

Fig.1: Workload components of transformers.

Fig.7: Chip measurements.

Fig.8: Die micrograph.

Table 1: Measured application performance at 0.67V.

Table 2: Comparison to prior work.

M

K

K

N

VL

VS VS

1 12

2

2

1

N

M

3

3

3

4 4

for m =[0:M/VL) // Temporal tiling along M dimension
for n =[0:N/AD) // Temporal tiling along N dimension
for k =[0:K/VS) // Output stationary
for a =[0:AD) // A input stationary
for l = [0:VL) // Spatial B input activation reuse
for v = [0:VS) // Spatial output partial sum reuse

compute_MAC

1

2

3

4

4
AD

AD

VS: Vector Size, VL: Vector Lanes, AD: Accumulation collector Depth

Input Matrix A Input Matrix B Output Matrix C
INT8 Datapath INT4 Datapath

X
4 4

64-wide

+

x
8 8

814

X
8 8

X
8 8

32-wide

+

21
+

24

A Input
Vector

B Input
Vector

Partial
Sum In

24

X

X
4 4

X
4 4

Per-vector
Scale Factors

22
+

24

Partial
Sum In

24

24

Rounding

+
24

Partial
Sum In

24

VSQ Support
A Input
Vector

B Input
Vector

Partial Sum Out

128 8

384

Configurable Vector MAC Datapath

Accumulation
Collector

(768B, Dual Port)
Latch Array 16

Per-Matrix
Scaling

Bias
Addition

Latch Array

Bias Buffer

ReLU Vector Max

Quantize and Round

Approx. Softmax

Reciprocal

Output Buffer
(8.5KB, Single Port)

136
SRAM 512

Address Generator

Buffer Manager
Address Generator

Buffer Manager

16 La
nes

Wgt Vector
SRAM

16 Banks

8Latch Array

Scale Buffer
256

128
264

2048

264

A-Buffer
(66KB, Dual Port)

B-Buffer
(66KB, Dual Port)

SRAM

Control

Status Out Softmax Out Data Out

Config In A Data In B Data In

…

…

…

Post-Processing Unit (PPU)

… …

…

…

…

8-bit Datapath

Update
every
cycle

Update every
16 cycles

4-bit Datapath VSQ Support

Write to PPU after
all accumulation
is complete

Traditional Quantization VSQ

One scale factor
per matrix

Two scale factors: one per
vector, one per matrix

High quantization noise Reduced
quantization noise

Traditional Quantization

Noise

Scaling

Max value
in matrix

Min value
in matrix

More scaling

-8 0 7

-8 0 7

Min value
in vector

Max value
in vector

VSQ

INT4 Quantization

FP32 data
distribution

VSQ Scale Factors

M

K

K

N

M

N

64

64
…

…

…

…

One scale factor for each 64-element input vector

Second scale factor for each input matrix

Bert-
Large

Bert-
Base

Model (m) 1024 768
Heads (h) 16 12

Sequence* (s) 384 384
Query size (q) 64 64

Layers (n) 24 12
MACs (x109) 123 35

Add &
Norm

ms
*Sequence varies with workload

4ms

4ms

ms

ms

Feed Forward
FC1

ReLU

FC2

Add &
Norm

ms

h

ss

h

ss

h

sq

ms

ms
Multi-Head Attention

Query Key Value
ms msms

Split Split Split

h

sq

h

sq

h

sq

BMM1

Scale

Softmax

BMM2

Concat

Proj.

MatMul
without
weights

MatMul
with

weights

Post-
processing

Datapath Ops

PPU Ops

Inputs

Transformer Encoder

Output

n

…

Feed Forward

Add & Norm

Multi-Head
Attention

Add & Norm

B Input
SRAMs

A Input
SRAMs

A Input
SRAMs

Output
SRAMs

Logic

431μm

355μm

Dai, Steve, et al. "Vs-quant: Per-vector scaled quantization for accurate low-precision neural network
inference." Proceedings of Machine Learning and Systems 3 (2021): 873-884.

Do it Locally

Do it Locally

Cost of an add (1fJ/bit) = Cost of going 10um.

The Importance of Staying Local

LPDDR DRAM
GB

On-Chip SRAM
MB

Local SRAM
KB

640pJ/word

50pJ/word

5pJ/word

Message-Driven Processing
One Communication, Many Operations

R
0

R
1
5

R
1
6

R
3
1

Arbiter

Bin-count
SRAM 1

Update-bin
logic (UBL)

NZ bins
SRAM

Update-bin
logic (UBL)

Bin-count
SRAM 16

NZ bins
SRAM

Network-on-chip
(16-endpoint

Butterfly)
Seed-position
lookup (SPL)

(seed, j) candidate_pos

DRAM

(bin, j)

Seed-position
lookup (SPL)

Seed-position
lookup (SPL)

Seed-position
lookup (SPL)

DRAM

DRAM

DRAM

AGCTTTCCCTACGTAGCTGCATCTATTTCTCGTATTTAGCG
T
G
C
T
T
G
G
A
T
A
T
A candidate_pos

One traversal of network

• Access hash table

• Increment bin (RMW)

• If it was zero, append
to NZ bins

• If over threshold,
append to output
queue

Turakhia, Yatish, Gill Bejerano, and William J. Dally. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read
assembly." ACM SIGPLAN Notices 53.2 (2018): 199-213.

30

Many-Hot Recommenders

NEURAL RECOMMENDER ENGINE

GPU nGPU 2GPU 1GPU 0

…

…

Linear layers
Data parallel

Replicated across GPUs

Embedding tables
Model parallel

Distributed across GPUs

40GB

60GB
60GB

10
GB

Redistribute: Model-Parallel -> Data-Parallel All2All

20
GB

10
GB 10GB

31

28mm
• 48mm round trip on GPU die
• 4.8pJ/b @ 100fJ/b-mm

• 16mm round trip on DRAM die
• 1.6pJ/b
• Part of 5pJ/b access

Large Language Model (LLM) Inference
Megatron 20B parameter model

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 4 8 16 32 64 128 256

To
ke

ns
 p

er
 se

co
nd

Batch Size

Hopper Mimir (Hopper 10x BW)

• 3.6x faster at large batch sizes

• 8.9x faster at 20ms/token

20ms

20ms

10x BW

Do it Combinationally

Do it Combinationally

Cost of an add ~ Cost of a flip flop (1fJ/b)

+ +
+

+

Do it Sparsely

Pruning

pruning
neurons

pruning
synapses

after pruningbefore pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015

Zero Gating

A

A_Z

B

B_Z

OR

L

L

Mul

C_Z

C

Implemented in NVDLA 2014

EIE

Weight FIFO
(sparse)

IARAM
(sparse)

F

I

F*I…

FxI multiplier array
indices

indices

Coordinate
Computation

F

I
F*I

A accumulator buffers

Buffer bank

Buffer bank

F*
I—

A
 a

rb
it

ra
te

d
 x

b
ar

O
A

R
A

M
(s

p
ar

se
)

in
d

ic
es

Neighbors

PPU:
Halos
ReLU
Compress

…

…

SCNN

0

0.2

0.4

0.6

0.8

1

1.2

0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4 0.5/0.5 0.6/0.6 0.7/0.7 0.8/0.8 0.9/0.9 1.0/1.0

En
er

gy

Weight / Activation Density

DCNN

DCNN-opt

SCNN

Structured Sparsity

NVIDIA A100 Tensor Core GPU Architecture whitepaper

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Conclusion

Conclusion

•V2 – Reduce V until it gets too slow (~0.5V)
•C – Communication (100fJ/b-mm), Memory (50fJ/b), Operations (Add - 1fJ/b)
•Do
•Less – overhead, communication
•Use small numbers – scale, clip, log rep
•Locally – message-driven, careful placement, NUMA
•Combinationally – flop ~= add
•Sparsely - but beware the overhead

•There are several orders of magnitude left, but it’s getting harder

𝐸 = !
"C𝑉

"

