Energy Efficiency and AI Hardware

Stanford AHA Retreat
August 31, 2023

Bill Dally
Chief Scientist and SVP of Research, NVIDIA Corporation
Adjunct Professor of CS and EE, Stanford
Q: How can AI hardware be made more energy efficient?

Improving the energy efficiency of AI hardware is a crucial goal to enable sustainable and scalable deployment of AI technologies. Here are several strategies and techniques that can be employed to make AI hardware more energy efficient:

1. Specialized Hardware Design:
 1. ASICs (Application-Specific Integrated Circuits): Designing hardware specifically tailored to AI workloads can significantly improve energy efficiency. ASICs can be optimized for specific neural network operations, reducing unnecessary overhead.
 2. FPGAs (Field-Programmable Gate Arrays): These reconfigurable hardware platforms can be programmed to accelerate specific AI tasks, providing better energy efficiency compared to general-purpose processors.

2. Quantization and Pruning:
 1. Quantization: Reducing the precision of numerical values used in computations (e.g., using 8-bit instead of 32-bit floating-point numbers) can lead to energy savings without a significant drop in accuracy.
 2. Weight Pruning: Removing or setting small weights to zero in neural networks reduces the computational workload and memory requirements, leading to energy savings during both training and inference.

3. Low-Power Components:
 1. Low-Power Processors: Using processors with low power consumption characteristics, such as mobile processors or those designed for IoT devices, can help reduce energy usage.
 2. Efficient Memory Hierarchies: Optimizing the memory subsystem to minimize data movement and maximize data reuse can lead to significant energy savings.

4. Hardware-Software Co-Design:
 1. Model Optimization: Collaborative efforts between hardware and software engineers can lead to model architectures that are more energy-efficient on a specific hardware platform.
 2. Compiler Optimization: Tailoring compilers to generate code that leverages hardware features efficiently can reduce energy overhead.

5. Dynamic Voltage and Frequency Scaling (DVFS):
 1. Dynamic Scaling: Adapting the operating voltage and clock frequency of the hardware components based on workload requirements can lead to energy savings when the hardware is not fully utilized.

6. Sleep States and Power Gating:
 1. Low-Power States: Putting hardware components or entire sections into low-power sleep states when they're not actively needed can save energy.
 2. Power Gating: Completely shutting down certain hardware components when they're not needed can minimize leakage power consumption.

7. Cooling and Thermal Management:
 1. Efficient Cooling: Proper cooling solutions can prevent hardware components from overheating, which can cause energy inefficiencies and reduced lifespan.

8. Energy-Aware Training:
 1. Regularization Techniques: Methods like dropout and weight decay during training can lead to models that generalize better and require less computational resources for inference.

9. Energy-Efficient Algorithms:
 1. Algorithmic Changes: Exploring and using algorithms that require fewer computational steps or operations can contribute to energy savings.

10. Hardware Acceleration:
 • AI Hardware Accelerators: Utilizing dedicated hardware accelerators designed for AI tasks, like GPUs or TPUs, can offer significant energy efficiency improvements.

11. Dynamic Workload Management:
 • Load Balancing: Distributing workloads across multiple hardware components efficiently can prevent overload some components while underutilizing others.

12. Energy Monitoring and Optimization:
 • Real-Time Monitoring: Implementing systems that continuously monitor energy consumption can enable dynamic optimization based on the workload and energy constraints.
 • Overall, achieving energy efficiency in AI hardware requires a holistic approach involving hardware design, software optimization, algorithmic changes, and system-level considerations. Collaboration between hardware engineers, software developers, and AI researchers is essential to create energy-efficient AI solutions that align with the goals of sustainability and performance.
As of my last knowledge update in September 2021, Bill Dally is a prominent computer scientist and electrical engineer known for his work in computer architecture, particularly in the field of parallel processing and hardware acceleration. He has been involved in various projects and research related to energy-efficient AI hardware. While I can't provide direct quotes from him, I can offer insights into some of the principles and strategies he might advocate for making AI hardware more energy-efficient based on his previous work and statements:

1. **Architectural Innovation**: Dally might emphasize the importance of rethinking the fundamental architecture of AI hardware to optimize for energy efficiency. He could propose exploring novel architectures that are specifically designed for AI workloads, leveraging concepts such as dataflow and specialized accelerators.

2. **Reduced Precision Computing**: Dally could advocate for the use of reduced-precision arithmetic (such as 8-bit or even lower) for AI computations. This approach can significantly reduce energy consumption while maintaining acceptable levels of accuracy in neural network computations.

3. **Hardware-Software Co-Design**: Dally might stress the significance of collaboration between hardware and software teams. He could suggest that close cooperation between these two groups is crucial for tailoring hardware designs to efficiently execute the types of computations commonly found in AI workloads.

4. **Sparsity and Pruning**: Dally could propose the integration of techniques like weight pruning and sparsity in neural networks. By eliminating unnecessary parameters and operations, AI hardware can be used more efficiently, resulting in reduced energy consumption.

5. **Memory Hierarchy Optimization**: Given Dally's expertise in parallel processing and memory systems, he might emphasize designing memory hierarchies that are optimized for AI workloads. Efficient memory access can lead to reduced energy overhead.

6. **Hybrid Computing**: Dally could suggest exploring hybrid computing approaches that combine general-purpose processors with specialized AI accelerators. This could involve offloading specific AI tasks to dedicated hardware components, thereby improving energy efficiency.

7. **Dynamic Voltage and Frequency Scaling (DVFS)**: Given his background, Dally might discuss the importance of dynamic voltage and frequency scaling to adapt hardware performance based on the current workload, leading to energy savings.

8. **Efficient Communication**: Dally could highlight the significance of minimizing data movement between different components of the hardware. Efficient communication mechanisms can prevent energy waste due to unnecessary data transfers.

9. **Energy-Efficient Interconnects**: Dally could propose using energy-efficient interconnect architectures to reduce the energy consumed in data transmission within the hardware.

10. **Power Management Techniques**: Dally might discuss power gating, where inactive components are temporarily powered off to save energy, as well as the importance of fine-tuned power management strategies.

Please note that these are speculative insights based on Bill Dally's previous work and contributions to the field of computer architecture. For the most up-to-date and accurate information, it's recommended to refer to his recent publications, talks, or interviews.
Deep Learning was Enabled by Hardware
Deep Learning is Gated by Hardware

- AlexNet
- ResNet
- BERT
- GPT
- Megatron-BERT
- Megatron-GPT2
- GPT-2
- Turing NLG
- GPT-3
- GPT-4

Petaflop/s - Days Training

- AlexNet
- ResNet

- 2012
- 2013
- 2014
- 2016
- 2017
- 2018
- 2020
\[E = \frac{1}{2} CV^2 \]
\[E = \frac{1}{2} CV^2 \]

V: Reduce voltage - to the point it starts getting too slow

- ~0.5V today
- 2x vs 0.7v, 4x vs 1.0v
- Too slow when leakage or cost excessive
\[E = \frac{1}{2} CV^2 \]

C: Three components

- Communication (~100fJ/b-mm on-chip)
- Memory (~50fJ/b for small RAM)
- Operations (~1fJ/b for add)
A Prescription

- Do
 - Less (fewer operations)
 - It with smaller data (movement cheaper, math cheaper2)
 - Locally (less movement)
 - Combinationally (flops burn energy)
 - It sparsely
Do Less
Do Less Overhead

Area is proportional to energy – all 28nm

16b Int Add, 32fJ

Specialized Instructions Amortize Overhead

<table>
<thead>
<tr>
<th>Operation</th>
<th>Energy**</th>
<th>Overhead*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFMA</td>
<td>1.5pJ</td>
<td>2000%</td>
</tr>
<tr>
<td>HDP4A</td>
<td>6.0pJ</td>
<td>500%</td>
</tr>
<tr>
<td>HMMA</td>
<td>110pJ</td>
<td>22%</td>
</tr>
<tr>
<td>IMMA</td>
<td>160pJ</td>
<td>16%</td>
</tr>
</tbody>
</table>

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process
Communication-Efficient Algorithms

Don’t minimize big-O ops, minimize cost.

An add is worth 10um of movement
Do it with Smaller Data
int8

fp16

log8

sym8

spike

analog

• Attributes:
 • Cost
 • Operation energy
 • Movement energy
 • Accuracy
 • Dynamic range
 • Precision (error)

[Diagram of neural network operations and attributes]
Dynamic Range

- **int8**: Precision (Error) - Acc (Min), Acc (Max), Dyn
- **fp16**: Precision (Error) - Acc (Min), Acc (Max), Dyn
- **log8**: Precision (Error) - Acc (Min), Acc (Max), Dyn
- **sym8**: Precision (Error) - Acc (Min), Acc (Max), Dyn
- **spike**: Precision (Error) - Acc (Min), Acc (Max), Dyn
- **analog**: Precision (Error) - Acc (Min), Acc (Max), Dyn
Symbol Representation (Codebook)

- linear quantization
- nonlinear quantization by clustering and finetuning

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015
4-bit Log Representation (L2.2)

Max Error 9%

4-bit Integer Representation (Int4)

Max Error 33%
4-bit Log Representation (L2.2)

- Max Error: 9%

FP2.2

- Max Error: 13%
• Log Numbers

• Multiplies are cheap – just an add

• Adds are hard – convert to integer, add, convert back
 • Fractional part of log is a lookup
 • Integer part of log is a shift

• Can factor the lookup outside the summation
 • Only convert back after summation (and NLF)
Quotient Component(s) → Partial Sums Generation Unit

Remainder Component(s) → Sorting Unit

Partial Sum Accumulator
120(n-1)
122(n-1)

Constant = 2^n

1 << Quotient

Partial Sum Accumulator
120(1)
122(1)

Partial Sum Accumulator
120(0)
122(0)

Addition Unit
125

Fig. 1

\[J = \frac{4 - B}{3} s^2 \int_0^s f_{|X|}(x)dx + \int_s^\infty (s - x)^2 f_{|X|}(x)dx \]

\[S_{n+1} = \frac{E[|X| \cdot \mathbf{1}_{\{|X| > s_n\}}]}{\frac{4 - B}{3} E[\mathbf{1}_{\{|X| < s_n\}}] + E[\mathbf{1}_{\{|X| > s_n\}}]} \]
INT4 Quantization

Traditional Quantization

More scaling

VSQ

FP32 data distribution

VSQ Scale Factors

One scale factor for each 64-element input vector

Second scale factor for each input matrix

<table>
<thead>
<tr>
<th>Traditional Quantization</th>
<th>VSQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>One scale factor per matrix</td>
<td>Two scale factors: one per vector, one per matrix</td>
</tr>
<tr>
<td>High quantization noise</td>
<td>Reduced quantization noise</td>
</tr>
</tbody>
</table>

Do it Locally
Do it Locally

Cost of an add (1fJ/bit) = Cost of going 10um.
The Importance of Staying Local

- LPDDR DRAM
 - GB
 - 640pJ/word
- On-Chip SRAM
 - MB
 - 50pJ/word
- Local SRAM
 - KB
 - 5pJ/word
Message-Driven Processing
One Communication, Many Operations

One traversal of network

- Access hash table
- Increment bin (RMW)
- If it was zero, append to NZ bins
- If over threshold, append to output queue

Many-Hot Recommenders

NEURAL RECOMMENDER ENGINE

- Linear layers
 - Data parallel
 - Replicated across GPUs

- Embedding tables
 - Model parallel
 - Distributed across GPUs

Redistribute: Model-Parallel -> Data-Parallel All2All
• 48mm round trip on GPU die
 • 4.8pJ/b @ 100fJ/b-mm

• 16mm round trip on DRAM die
 • 1.6pJ/b
 • Part of 5pJ/b access
Large Language Model (LLM) Inference
Megatron 20B parameter model

- 3.6x faster at large batch sizes
- 8.9x faster at 20ms/token
Do it Combinationally
Do it Combinationally

Cost of an add ~ Cost of a flip flop (1fJ/b)
Do it Sparsely
Pruning

before pruning

after pruning

pruning synapses

pruning neurons

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015
Zero Gating

Implemented in NVDLA 2014
SCNN

Weight FIFO (sparse)

IARAM (sparse)

Coordinate Computation

FxI multiplier array

F*I

OARAM (sparse) indices

PPU: Halos ReLU Compress

Neighbors

A accumulator buffers

Buffer bank

Buffer bank

F*I arbitrated xbar

_indices

_indices

_indices
Conclusion
Conclusion

\[E = \frac{1}{2}CV^2 \]

- \(V^2\) – Reduce \(V\) until it gets too slow (~0.5V)
- \(C\) – Communication (100fJ/b-mm), Memory (50fJ/b), Operations (Add - 1fJ/b)
- Do
 - Less – overhead, communication
 - Use small numbers – scale, clip, log rep
 - Locally – message-driven, careful placement, NUMA
 - Combinationally – flop \(\approx\) add
 - Sparsely - but beware the overhead

- There are several orders of magnitude left, but it’s getting harder