Energy Efficiency and Al Hardware

Stanford AHA Retreat
Auqgust 31, 2023

Bill Dally
Chief Scientist and SVP of Research, NVIDIA Corporation
Adjunct Professor of CS and EE, Stanford

Q: How can Al hardware be made more energy efficient?

Improving the energy efficiency of Al hardware is a crucial goal to enable sustainable and scalable deployment of Al technologies. Here are several strategies and techniques that can be employed to make Al hardware more energy efficient:

1. Specialized Hardware Design:
1. ASICs (Application-Specific Integrated Circuits): Designing hardware specifically tailored to Al workloads can significantly improve energy efficiency. ASICs can be optimized for specific neural network operations, reducing unnecessary overhead.

2. FPGAs (Field-Programmable Gate Arrays): These reconfigurable hardware platforms can be programmed to accelerate specific Al tasks, providing better energy efficiency compared to general-purpose processors.

2. Quantization and Pruning:
1. Quantization: Reducing the precision of numerical values used in computations (e.g., using 8-bit instead of 32-bit floating-point numbers) can lead to energy savings without a significant drop in accuracy.

2. Weight Pruning: Removing or setting small weights to zero in neural networks reduces the computational workload and memory requirements, leading to energy savings during both training and inference.

3. Low-Power Components:
1. Low-Power Processors: Using processors with low power consumption characteristics, such as mobile processors or those designed for IoT devices, can help reduce energy usage.

2. Efficient Memory Hierarchies: Optimizing the memory subsystem to minimize data movement and maximize data reuse can lead to significant energy savings.

4. Hardware-Software Co-Design:
1. Model Optimization: Collaborative efforts between hardware and software engineers can lead to model architectures that are more energy-efficient on a specific hardware platform.

2. Compiler Optimization: Tailoring compilers to generate code that leverages hardware features efficiently can reduce energy overhead.

5. Dynamic Voltage and Frequency Scaling (DVFS):

1. Dynamic Scaling: Adapting the operating voltage and clock frequency of the hardware components based on workload requirements can lead to energy savings when the hardware is not fully utilized.

6. Sleep States and Power Gating:
1. Low-Power States: Putting hardware components or entire sections into low-power sleep states when they're not actively needed can save energy.

2. Power Gating: Completely shutting down certain hardware components when they're not needed can minimize leakage power consumption.

7. Cooling and Thermal Management:

1. Efficient Cooling: Proper cooling solutions can prevent hardware components from overheating, which can cause energy inefficiencies and reduced lifespan.

8. Energy-Aware Training:

1. Regularization Techniques: Methods like dropout and weight decay during training can lead to models that generalize better and require less computational resources for inference.

9. Energy-Efficient Algorithms:

1. Algorithmic Changes: Exploring and using algorithms that require fewer computational steps or operations can contribute to energy savings.
10. Hardware Acceleration:
. Al Hardware Accelerators: Utilizing dedicated hardware accelerators designed for Al tasks, like GPUs or TPUs, can offer significant energy efficiency improvements.
11. Dynamic Workload Management:
. Load Balancing: Distributing workloads across multiple hardware components efficiently can prevent overloading some components while underutilizing others.
12. Energy Monitoring and Optimization:
. Real-Time Monitoring: Implementing systems that continuously monitor energy consumption can enable dynamic optimization based on the workload and energy constraints.

. Overall, achieving energy efficiency in Al hardware requires a holistic approach involving hardware design, software optimization, algorithmic changes, and system-level considerations. Collaboration between hardware engineers, software developers, and Al researchers is essential to create energy-
efficient Al solutions that align with the goals of sustainability and performance.

<A NVIDIA.

As of my last knowledge update in September 2021, Bill Dally is a prominent computer scientist and electrical engineer known for his work in computer
architecture, particularly in the field of parallel processing and hardware acceleration. He has been involved in various projects and research related to
energy-efficient Al hardware. While | can't provide direct quotes from him, | can offer insights into some of the principles and strategies he might
advocate for making Al hardware more energy-efficient based on his previous work and statements:

1.Architectural Innovation: Dally might emphasize the importance of rethinking the fundamental architecture of Al hardware to optimize for energy
efficiency. He could propose exploring novel architectures that are specifically designed for Al workloads, leveraging concepts such as dataflow and
specialized accelerators.

2.Reduced Precision Computing: Dally could advocate for the use of reduced-precision arithmetic (such as 8-bit or even lower) for Al computations. This
approach can significantly reduce energy consumption while maintaining acceptable levels of accuracy in neural network computations.
3.Hardware-Software Co-Design: Dally might stress the significance of collaboration between hardware and software teams. He could suggest that close
cooperation between these two groups is crucial for tailoring hardware designs to efficiently execute the types of computations commonly found in Al
workloads.

4.Sparsity and Pruning: Dally could propose the integration of techniques like weight pruning and sparsity in neural networks. By eliminating unnecessary
parameters and operations, Al hardware can be used more efficiently, resulting in reduced energy consumption.

5.Memory Hierarchy Optimization: Given Dally's expertise in parallel processing and memory systems, he might emphasize designing memory
hierarchies that are optimized for Al workloads. Efficient memory access can lead to reduced energy overhead.

6.Hybrid Computing: Dally could suggest exploring hybrid computing approaches that combine general-purpose processors with specialized Al
accelerators. This could involve offloading specific Al tasks to dedicated hardware components, thereby improving energy efficiency.

7.Dynamic Voltage and Frequency Scaling (DVFS): Given his background, Dally might discuss the importance of dynamic voltage and frequency scaling to
adapt hardware performance based on the current workload, leading to energy savings.

8.Efficient Communication: Dally could highlight the significance of minimizing data movement between different components of the hardware. Efficient
communication mechanisms can prevent energy waste due to unnecessary data transfers.

9.Energy-Efficient Interconnects: Dally could propose using energy-efficient interconnect architectures to reduce the energy consumed in data
transmission within the hardware.

10.Power Management Techniques: Dally might discuss power gating, where inactive components are temporarily powered off to save energy, as well as
the importance of fine-tuned power management strategies.

Please note that these are speculative insights based on Bill Dally's previous work and contributions to the field of computer architecture. For the most

up-to-date and accurate information, it's recommended to refer to his recent publications, talks, or interviews.
<A NVIDIA.

Deep Learning was Enabled by Hardware

<A NVIDIA.

Petaflop/s — Days Training

Deep Learning is Gated by Hardware
GPT-4

est
1.E+04 GPT-3

1 E+03 Megatron-BERT

Megatron-GPTZ2 -
1 E4+0D2 Turing NLG

GPT-2
1.E+0O1
BERT

1.E+00O
ResNet

1.E-O1

AlexNet
1.E-O2

1.E-O3
2012 2013 2014 2016 2017 2018 2020

NVIDIA

IIIIIII

_ 1ry2
E=1cv

V. Reduce voltage - to the point it starts getting too slow
» ~0.5V today
e 2XxVs0.7v,4x vs 1.0v

» Too slow when leakage or cost excessive

IIIIIII

_ 1ry2
E=1cv

C: Three components

e Communication (~100fJ/b-mm on-chip)
« Memory (~50fJ/b for small RAM)
e Operations (~1fJ/b for add)

IIIIIII

A Prescription

Do
Less (fewer operations)

It With smaller data (movement cheaper, math cheaper?)
Locally (less movement)

Combinationally (flops burn energy)

It sparsely

NVIDIA

Do Less

Do Less Overhead

Area is proportional to energy —all 28nm

16b Int Add, 32fJ

OOO CPU Instruction - 250pJ (99.99% overhead, ARM A-15)

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science,
Tech. Rep. FORTH-ICS/TR-450 (2015)

Specialized Instructions Amortize Overhead

Operation Energy™® Overhead”
HFMA 1.5pJ 2000%
HDP4A 6.0pJ 500%
HMMA 110pJ 22%
IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch - 30pJ
**Energy numbers from 45nm process

Communication-Efficient Algorithms
Don't minimize big-0 ops, minimize cost.

An add is worth 10um of movement

Do 1t with Smaller Data

INt8

fpl16

log8

syma3

spike

analog

- Attributes:
Cost
Operation energy

Activation
Buffer

Storage

Movement ener

Accuracy

Dynamic range
Precision (error)

Transport

gy

Multiply

Accumulate

Operation

<A NVIDIA. I

INt8

Dynamic Range

fp 16 1E+0O 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9 1E+10

spike
m Acc (Min) m Acc (Max) H Dyn
6
log8 >y

log8
Syma8 fp16
INnt8

spike 1 0.1 0.01 0.001 0.0001

Precision (Error)

analog /\/\

<A NVIDIA. I

Symbol Representation (Codebook)

20000
xXx |Inear quantization
o nonlinear quantization by

15000} ®®@® clustering and finetuning
>
= 10000}
C
Q
g

5000¢}

O X X X X @ & ® 0X0 X @ X @ & 0 0X0 @ X0 OX @ X X X X
—0.04 —0.02 0.00 0.02 0.04 0.06

weight value

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015 I NVIDIA I

Count

Weight distribution of layer 1 (PTB small)
6000

5000
4000
3000
2000
1000

O .
2959 2 -1.5 -1 -05 0 05 1 15 2

Weight value

Closest Represenatble Value

15

13

d
d

O

\l

4-bit Log Representation (L2.2)

Max Error

9%

3 5 / 9 11 13

Actual Value

15

Closest Represenatble Value

15

13

d
d

O

\l

4-bit Integer Representation (Int4)

Max Error

33%

3 5 V4 9 11 13
Actual Value

15

<ANVIDIA. I

Closest Represenatble Value

15

13

d
d

O

\l

4-bit Log Representation (L2.2)

Max Error

9%

3 5 V4 9 11 13
Actual Value

15

Closest Representable value

15

13

d
d

O

\l

FP2.2

Max Error

13%

7 9
Actual Value

11 13

15

<ANVIDIA. I

- Log Numbers
- Multiplies are cheap - just an add
- Adds are hard — convert to integer, add, convert back 4 3
- Fractional part of log is a look
Integer part of log s 3 Shift

- Can factor the lookup outside the summation
- Only convert back after summation (and NLF)

<ANVIDIA. I

Quotient l
Component(s) S

e o e e o e e e s
i Partial Sums Generation Unit |

-: 105 :

§ ;

3 .

Remainder | .)

' | . $ £ : v i H
Component(s) Sorting Unit :
! 110 .;‘

] :

; e :

$ 5 $

;’ T << Quotient 1 << Quotient] 1 << Quotient -§j

z ‘

i s.

1 paaaaasasamamamamamaiiemmmmmmmmmmmmmmmy mmsmsmmmmmmmmmmanatananmamamamammmany jaessssssmssssmssshasssssasasasaaaaasa ;

; i : ’ i i * e i ¥ e . :

.| Partial Sum | | Partial Sum | Partial Sum | !

S Accumuiator ¢ oo Aocumuiatori Accumulator |

= | a | ey i.

;.

;.

¢

Constant =2 i :

Fartial Sum

Pamai Sum Pamai Sum

Addition Unit

125

<ANVIDIA. I

| ' ‘ | | ||W \‘llll |
L. 6 | | L. 6
CJ : | ||’| |‘||| |
al al
— —
S, | 2 4 1|
- - ’ ‘
o 0

| | " ‘ll |_

) “) _J A‘ll ml _

-08 -06 |-04 -02 00 02 04 0.6 /0-8 -08 -06 -04 -02 00 02 04 06 08
N
Value ~ Value
large g. noise low density data

Sakr, Charbel, et al. "Optimal clipping and magnitude-aware differentiation for improved quantization-aware
training.” International Conference on Machine Learning. PMLR, 2022 SInvioia I

Welght Layer #17 Lo Welght Layer #45

— analytlcal i 5 5 | — analytical|
--- empirical| | [--- empirical|

107,

-

MSE
MSE
oy

J=s | fn@drt [G-t Sl N g
0 S

. N . . : AN N . .
100 . ST U S ST i 10 NS s ey 6-b|t _____________]
[Z N . : f] [: : f . j
i ' ' -~ ' ' 7 i ' ' ' 1

107/ | 107’ :L : : ; 8_b|t
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25

Clipping Scalar Clipping Scalar

107,

Actlvat|on Layer #13 ot Activation Layer #24

A R R T 5 ; 5 — analytical
A _________ _________ _________ -__t__-___e.m.-.'r!_ca_'.._ 0\ |z empirical|
i COSTTES)

_ \ 5 5 z z s s _ 5 5 5 5 z
103_. B CR S S N — . e e e .]_('_)3r e e A e .. .
L ' ' . ‘ ' . ' ' 4 L ' ' ' ' . 4

Sn+1 — =
) B
—— E|1qxi<s3] + E|1gxi>s,3]

MSE
Q
T
o
MSE
A\

. N \ . .

. ~

10—4 ! . : : : : . ! -4 : ! ! : :
procees Pttt "l s SRR o S i Pttt poe E 10 "+ S e A I SRS 7
' . \] : : ; ; ; :)
g ' ' A L ' ' ' 3 2 . A ' ' ' . 9

00 05 1.0 15 2.0 25 3.0 3.5 4.0 4.5 0.0 0.5 1.0 15 50 2.5 3.0

Clipping Scalar Clipping Scalar
<A NVIDIA I

INT4 Quantization VSQ Scale Factors

Noise :
— Viax value | ONE scale factor for each 64-element input vector

in matrix / \
64

Min value
iNn matrix

]
A 64
Scaling W x K = MD
A
-8 0 7 N
Traditional Quantization N
Second scale factor for each input matrix
Min value W Max value

INn vector

INn vector

One scale factor Two scale factors: one per
per matrix vector, one per matrix

More scaling

/

FP32 data -8 0 7
distribution VSQ

. L . Reduced
High quantization noise L .
guantization noise

<ANVIDIA. I

Do it Locally

Do it Locally

Cost of an add (1fJ/bit) = Cost of going 10um.

The Importance of Staying Local

LPDDR DRAM

GB

l 640pJ/word

On-Chip SRAM
MB

l 50pJ/word

Local SRAM

KB

l 5pJd/word

<ANVIDIA. I

Message-Driven Processing
One Communication, Many Operations

__

Network-on-chip
One traversal of network 16-ondpoint
DRAM Seed-position » — Butterfly)1 BSiII’;XKnu:I !
* Access hash table [tookup (SPL) | i { NZ bins
Update-bin
.| Seed-position logic (UBL) |
+ Increment bin (RMW) DRAM [tookup spy |17 : :m# Arbiter
Seed-position Update-bin) 7] '
. DRAM |00kup (SPL) L_» logic (UBL) “| NZ bins i
« |f it was zero, append — T3 SRAM =
: DRAM | Seed-position » Bin-count
to NZ bins | lookup (SPL) | SRAM 16
(seed,) candidate pos

* |f over threshold,
append to output
gqueue

D candidate pos

L L2

AGCTTTCCCTACGTAGCTGCATCTATTTCTCGTATTTAGC

GTGCTTGGATATA

Many-Hot Recommenders

NEURAL RECOMMENDER ENGINE

Linear layers
Data parallel
Replicated across GPUs

B
""""" N\ N7/) 4 R

e e e

Embedding tables i
Model parallel i
Distributed across GPUs i

GPUO GPU1 GPU 2 GPU n

30 <X NVIDIA.

28mm

* 48mm round trip on GPU die
* 4.8pJ/b @ 100fJ/b-mm

* 16mm round trip on DRAM die
* 1.6pJ/b
» Part of 5pJ/b access

Vertical
Interface

On- Chlp Dist

T m On- Ch|p Dist

|

|11}
||

|
"I""III

8-High DRAM

TSVs

TSVs

1L
IIIIII

|
II IIIII III II
I
I}

i

|11

/0

Vertical
Interface

IIII'IIlllIll"lll'll"ll'll'llll'l".l

Silicon Interposer

Memory Stack

Lots of Bandwidth

GPU Die

<ANVIDIA. I

Tokens per second

3000

7000

6000

Ul
o
o
-

D
)
)
)

W
o
o
-

2000

1000

Large Language Model (LLM) Inference

Megatron 20B parameter model

W Hopper m 10x BW

20ms

1 2

Batch Size

I ‘ 20ms| '| || J
B -I A 0l §
4 8 16 32 64 128 256

» 3.6x faster at large batch sizes

¢ 8.9x faster at 20ms/token

<ANVIDIA. I

Do 1t Combinationally

Do 1t Combinationally

Cost of an add ~ Cost of a flip flop (1fJ/b)

Do It Sparsely

after pruning
Q O O 0O C

- G

efore pruning

O
Q)
C O
=
o S
Q. O

0;0

e

pruning
Neurons

Zero Gating

Implemented in NVDLA 2014

EIE

Pointer Read — Arithmetic Unit Act R/W

<ANVIDIA. I

Weight FIFO
(sparse)

_ \\'I'I

Coordinate
Computation

indices

|IARAM
(sparse)

indices

)

FxI multiplier array

OARAM
(sparse)
indices

PPU:

Halos
RelLU

Compress

F =
//
S
E <> Buffer bank
D
F*l | ®
7 £
: 4R
<
| Buffer bank
N,

A accumulator buffers

Neighbors

NVIDIA

1.2

0.8

0.6

Energy

0.4

0.2

0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4 0.5/0.5 0.6/0.6 0.7/0.7 0.8/0.8 0.9/0.9 1.0/1.0
Weight / Activation Density

= DCNN
= DCNN-opt
= SCNN

<A NVIDIA. I

Structured Sparsity

Sparse Tensor

Input activations
Core x

Select

T

Dot-product '
1= zero entry
Fine-grained EE::
' Compress

structured pruning P HEEE

> 11T

111

2:4 sparsity: 2 non- ====

zero out of 4 entries HEEE

Dense trained ‘ﬂ Non-zero Indices Outputactivations
weights N data values
Fine-tune weights Fine-tuned sparse and

compressed weights

NVIDIA A100 Tensor Core GPU Architecture whitepaper <A NVIDIA. I

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Conclusion

Conclusion

1 2
E=1cv

V< - Reduce V until it gets too slow (~0.5V)
C - Communication (100fJ/b-mm), Memory (50fJ/b), Operations (Add - 1fJ/b)

Do
Less — overhead, communication

Use small numbers - scale, clip, log rep
Locally — message-driven, careful placement, NUMA

Combinationally - flop ~= add
Sparsely - but beware the overhead

There are several orders of magnitude left, but it's getting harder

) .\"“{ ._4%&-.’_"& 459
- X . -

S —— - -.l.:.._;:....,

y 2 < ?c ‘J’) .“'.'_‘

-

e — .—i. -

M‘ ~
AL 2

