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Q: How can AI hardware be made more energy efficient?
Improving the energy efficiency of AI hardware is a crucial goal to enable sustainable and scalable deployment of AI technologies. Here are several strategies and techniques that can be employed to make AI hardware more energy efficient:

1. Specialized Hardware Design:

1. ASICs (Application-Specific Integrated Circuits): Designing hardware specifically tailored to AI workloads can significantly improve energy efficiency. ASICs can be optimized for specific neural network operations, reducing unnecessary overhead.

2. FPGAs (Field-Programmable Gate Arrays): These reconfigurable hardware platforms can be programmed to accelerate specific AI tasks, providing better energy efficiency compared to general-purpose processors.

2. Quantization and Pruning:

1. Quantization: Reducing the precision of numerical values used in computations (e.g., using 8-bit instead of 32-bit floating-point numbers) can lead to energy savings without a significant drop in accuracy.

2. Weight Pruning: Removing or setting small weights to zero in neural networks reduces the computational workload and memory requirements, leading to energy savings during both training and inference.

3. Low-Power Components:

1. Low-Power Processors: Using processors with low power consumption characteristics, such as mobile processors or those designed for IoT devices, can help reduce energy usage.

2. Efficient Memory Hierarchies: Optimizing the memory subsystem to minimize data movement and maximize data reuse can lead to significant energy savings.

4. Hardware-Software Co-Design:

1. Model Optimization: Collaborative efforts between hardware and software engineers can lead to model architectures that are more energy-efficient on a specific hardware platform.

2. Compiler Optimization: Tailoring compilers to generate code that leverages hardware features efficiently can reduce energy overhead.

5. Dynamic Voltage and Frequency Scaling (DVFS):

1. Dynamic Scaling: Adapting the operating voltage and clock frequency of the hardware components based on workload requirements can lead to energy savings when the hardware is not fully utilized.

6. Sleep States and Power Gating:

1. Low-Power States: Putting hardware components or entire sections into low-power sleep states when they're not actively needed can save energy.

2. Power Gating: Completely shutting down certain hardware components when they're not needed can minimize leakage power consumption.

7. Cooling and Thermal Management:

1. Efficient Cooling: Proper cooling solutions can prevent hardware components from overheating, which can cause energy inefficiencies and reduced lifespan.

8. Energy-Aware Training:

1. Regularization Techniques: Methods like dropout and weight decay during training can lead to models that generalize better and require less computational resources for inference.

9. Energy-Efficient Algorithms:

1. Algorithmic Changes: Exploring and using algorithms that require fewer computational steps or operations can contribute to energy savings.

10. Hardware Acceleration:

• AI Hardware Accelerators: Utilizing dedicated hardware accelerators designed for AI tasks, like GPUs or TPUs, can offer significant energy efficiency improvements.

11. Dynamic Workload Management:

• Load Balancing: Distributing workloads across multiple hardware components efficiently can prevent overloading some components while underutilizing others.

12. Energy Monitoring and Optimization:

• Real-Time Monitoring: Implementing systems that continuously monitor energy consumption can enable dynamic optimization based on the workload and energy constraints.

• Overall, achieving energy efficiency in AI hardware requires a holistic approach involving hardware design, software optimization, algorithmic changes, and system-level considerations. Collaboration between hardware engineers, software developers, and AI researchers is essential to create energy-
efficient AI solutions that align with the goals of sustainability and performance.



As of my last knowledge update in September 2021, Bill Dally is a prominent computer scientist and electrical engineer known for his work in computer 
architecture, particularly in the field of parallel processing and hardware acceleration. He has been involved in various projects and research related to 
energy-efficient AI hardware. While I can't provide direct quotes from him, I can offer insights into some of the principles and strategies he might 
advocate for making AI hardware more energy-efficient based on his previous work and statements:
1.Architectural Innovation: Dally might emphasize the importance of rethinking the fundamental architecture of AI hardware to optimize for energy 
efficiency. He could propose exploring novel architectures that are specifically designed for AI workloads, leveraging concepts such as dataflow and 
specialized accelerators.
2.Reduced Precision Computing: Dally could advocate for the use of reduced-precision arithmetic (such as 8-bit or even lower) for AI computations. This 
approach can significantly reduce energy consumption while maintaining acceptable levels of accuracy in neural network computations.
3.Hardware-Software Co-Design: Dally might stress the significance of collaboration between hardware and software teams. He could suggest that close 
cooperation between these two groups is crucial for tailoring hardware designs to efficiently execute the types of computations commonly found in AI 
workloads.
4.Sparsity and Pruning: Dally could propose the integration of techniques like weight pruning and sparsity in neural networks. By eliminating unnecessary 
parameters and operations, AI hardware can be used more efficiently, resulting in reduced energy consumption.
5.Memory Hierarchy Optimization: Given Dally's expertise in parallel processing and memory systems, he might emphasize designing memory 
hierarchies that are optimized for AI workloads. Efficient memory access can lead to reduced energy overhead.
6.Hybrid Computing: Dally could suggest exploring hybrid computing approaches that combine general-purpose processors with specialized AI 
accelerators. This could involve offloading specific AI tasks to dedicated hardware components, thereby improving energy efficiency.
7.Dynamic Voltage and Frequency Scaling (DVFS): Given his background, Dally might discuss the importance of dynamic voltage and frequency scaling to 
adapt hardware performance based on the current workload, leading to energy savings.
8.Efficient Communication: Dally could highlight the significance of minimizing data movement between different components of the hardware. Efficient 
communication mechanisms can prevent energy waste due to unnecessary data transfers.
9.Energy-Efficient Interconnects: Dally could propose using energy-efficient interconnect architectures to reduce the energy consumed in data 
transmission within the hardware.
10.Power Management Techniques: Dally might discuss power gating, where inactive components are temporarily powered off to save energy, as well as 
the importance of fine-tuned power management strategies.
Please note that these are speculative insights based on Bill Dally's previous work and contributions to the field of computer architecture. For the most 
up-to-date and accurate information, it's recommended to refer to his recent publications, talks, or interviews.



Deep Learning was Enabled by Hardware



Deep Learning is Gated by Hardware
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V:  Reduce voltage - to the point it starts getting too slow

• ~0.5V today

• 2x vs 0.7v, 4x vs 1.0v

• Too slow when leakage or cost excessive
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C:  Three components

• Communication (~100fJ/b-mm on-chip)

• Memory (~50fJ/b for small RAM)

• Operations (~1fJ/b for add)



A Prescription

•Do 
• Less (fewer operations)

• It With smaller data (movement cheaper, math cheaper2)

• Locally (less movement)

• Combinationally (flops burn energy)

• It sparsely



Do Less



Do Less Overhead

OOO CPU Instruction – 250pJ (99.99% overhead, ARM A-15)

Area is proportional to energy – all 28nm

16b Int Add, 32fJ

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science, 
Tech. Rep. FORTH-ICS/TR-450 (2015)



Specialized Instructions Amortize Overhead

Operation Energy** Overhead*

HFMA 1.5pJ 2000%

HDP4A 6.0pJ 500%

HMMA 110pJ 22%

IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process



Communication-Efficient Algorithms

Don’t minimize big-O ops, minimize cost.

An add is worth 10um of movement

Dally, William. "On the model of computation: point." Communications of the ACM 65.9 (2022): 30-32.



Do it with Smaller Data
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Dynamic Range
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Symbol Representation (Codebook)

Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015

clustering
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4-bit Integer Representation (Int4)
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• Log Numbers

• Multiplies are cheap – just an add

• Adds are hard – convert to integer, add, convert back
• Fractional part of log is a lookup
• Integer part of log is a shift

• Can factor the lookup outside the summation
• Only convert back after summation (and NLF)
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Patent Application Publication Feb. 25 , 2021 Sheet 2 of 27 US 2021/0056446 A1 
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clip clip

clipped quantizationmax-scaled quantization

large q. noise low density data

Sakr, Charbel, et al. "Optimal clipping and magnitude-aware differentiation for improved quantization-aware 
training." International Conference on Machine Learning. PMLR, 2022
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 [3] [7] [8] [9] This work 
Process Technology 7nm 28nm 5nm 7nm 5nm 

Area (mm2) 19.6 1.9 5.46 3.04 0.153 
Supply Voltage (V) 0.55 – 0.75 0.6 – 0.9 0.55 – 0.9 0.58 – 0.83 0.46 – 1.05 

Frequency (MHz) 1000 – 1600 100 – 470 332 – 1196 290 – 880 152 – 1760 
On-Chip SRAM (KB) 8192 206 3072 2176 141 

Data Formats INT2/4, FP8/16/32 INT8 INT8, INT16 INT8/16, FP16 INT4 INT4 VSQ INT8 
Performance (TOPS) 102.4 (4b, 0.75V) 1.43 (8b, 0.9V) 14.7 (8b, 0.9V) 3.6 (8b, 0.83V) 3.6 (1.05V) 3.6 (1.05V) 1.8 (1.05V) 

Energy Efficiency (TOPS/W) 16.5* (4b, 0.55V) 17.5* (8b, 0.6V) 13.6* (8b, 0.6V) 6.8* (8b, 0.58V) 91.1† (0.46V) 95.6† (0.46V) 39.1† (0.46V) 
Area Efficiency (TOPS/mm2) 5.22 (4b, 0.75V) 0.75 (8b, 0.9V) 2.69 (8b, 0.9V) 1.2 (8b, 0.83V) 23.3 (1.05V) 23.3 (1.05V) 11.7 (1.05V) 

* Input densities not reported.    † Measured with 50% non-zero input densities. Includes estimated leakage power. 

Dataset, Task SQuAD v1.1, Reading Comprehension ImageNet, Image Classification 
Network BERT-Base BERT-Large DeIT-Small DeIT-Base 

Sequence Length 128 384 128 384 197 197 
 Baseline FP32 Accuracy (%) 87.5 87.5 90.3 90.9 79.8 81.8 
Data Bitwidth (4V = 4b VSQ) 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 4b 4V 8b 

Accuracy Loss (%) 80 0.7 0.7 81 0.5 0 88 1.1 1.1 89 0.8 0.1 29 3.6 0.7 25 1.3 0.4 
MAC Utilization (%) - 98 99 - 98 99 - 98 99 - 98 99 - 94 96 - 97 98 

Throughput (inferences/s) - 88 45 - 28 14 - 25 13 - 8.1 4.1 - 210 108 - 56 28 
Energy Eff. (inferences/s/W) - 1.7k 745 - 539 235 - 502 216 - 160 69 - 3.5k 1.5k - 1.0k 406 
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Fig.6: Workload mapping and data reuse. 

Fig.5: Accelerator block diagram. 

Fig.4: Approximate softmax implementation. 

Fig.3: 8b/4b datapath with VSQ support. 

Fig.2: Per-vector scaled quantization (VSQ). 

Fig.1: Workload components of transformers. 

Fig.7: Chip measurements. 

Fig.8: Die micrograph. 

Table 1: Measured application performance at 0.67V. 

Table 2: Comparison to prior work. 
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Do it Locally



Do it Locally

Cost of an add (1fJ/bit) = Cost of going 10um.



The Importance of Staying Local
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Message-Driven Processing
One Communication, Many Operations
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Turakhia, Yatish, Gill Bejerano, and William J. Dally. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read 
assembly." ACM SIGPLAN Notices 53.2 (2018): 199-213.
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Many-Hot Recommenders

NEURAL RECOMMENDER ENGINE
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28mm
• 48mm round trip on GPU die
• 4.8pJ/b @ 100fJ/b-mm

• 16mm round trip on DRAM die
• 1.6pJ/b
• Part of 5pJ/b access





Large Language Model (LLM) Inference
Megatron 20B parameter model
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Do it Combinationally



Do it Combinationally

Cost of an add ~ Cost of a flip flop (1fJ/b)
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Do it Sparsely



Pruning
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after pruningbefore pruning

Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015



Zero Gating
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Structured Sparsity

NVIDIA A100 Tensor Core GPU Architecture whitepaper

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf


Conclusion



Conclusion

•V2 – Reduce V until it gets too slow (~0.5V)
•C – Communication (100fJ/b-mm), Memory (50fJ/b), Operations (Add - 1fJ/b)
•Do 
•Less – overhead, communication
•Use small numbers – scale, clip, log rep
•Locally – message-driven, careful placement, NUMA
•Combinationally – flop ~= add
•Sparsely - but beware the overhead

•There are several orders of magnitude left, but it’s getting harder

𝐸 = !
"C𝑉

"




