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Q: How can Al hardware be made more energy efficient?

Improving the energy efficiency of Al hardware is a crucial goal to enable sustainable and scalable deployment of Al technologies. Here are several strategies and techniques that can be employed to make Al hardware more energy efficient:

1. Specialized Hardware Design:
1. ASICs (Application-Specific Integrated Circuits): Designing hardware specifically tailored to Al workloads can significantly improve energy efficiency. ASICs can be optimized for specific neural network operations, reducing unnecessary overhead.

2. FPGAs (Field-Programmable Gate Arrays): These reconfigurable hardware platforms can be programmed to accelerate specific Al tasks, providing better energy efficiency compared to general-purpose processors.

2. Quantization and Pruning:
1. Quantization: Reducing the precision of numerical values used in computations (e.g., using 8-bit instead of 32-bit floating-point numbers) can lead to energy savings without a significant drop in accuracy.

2. Weight Pruning: Removing or setting small weights to zero in neural networks reduces the computational workload and memory requirements, leading to energy savings during both training and inference.

3. Low-Power Components:
1. Low-Power Processors: Using processors with low power consumption characteristics, such as mobile processors or those designed for IoT devices, can help reduce energy usage.

2. Efficient Memory Hierarchies: Optimizing the memory subsystem to minimize data movement and maximize data reuse can lead to significant energy savings.

4. Hardware-Software Co-Design:
1. Model Optimization: Collaborative efforts between hardware and software engineers can lead to model architectures that are more energy-efficient on a specific hardware platform.

2. Compiler Optimization: Tailoring compilers to generate code that leverages hardware features efficiently can reduce energy overhead.

5. Dynamic Voltage and Frequency Scaling (DVFS):

1. Dynamic Scaling: Adapting the operating voltage and clock frequency of the hardware components based on workload requirements can lead to energy savings when the hardware is not fully utilized.

6. Sleep States and Power Gating:
1. Low-Power States: Putting hardware components or entire sections into low-power sleep states when they're not actively needed can save energy.

2. Power Gating: Completely shutting down certain hardware components when they're not needed can minimize leakage power consumption.

7. Cooling and Thermal Management:

1. Efficient Cooling: Proper cooling solutions can prevent hardware components from overheating, which can cause energy inefficiencies and reduced lifespan.

8. Energy-Aware Training:

1. Regularization Techniques: Methods like dropout and weight decay during training can lead to models that generalize better and require less computational resources for inference.

9. Energy-Efficient Algorithms:

1. Algorithmic Changes: Exploring and using algorithms that require fewer computational steps or operations can contribute to energy savings.
10. Hardware Acceleration:
. Al Hardware Accelerators: Utilizing dedicated hardware accelerators designed for Al tasks, like GPUs or TPUs, can offer significant energy efficiency improvements.
11. Dynamic Workload Management:
. Load Balancing: Distributing workloads across multiple hardware components efficiently can prevent overloading some components while underutilizing others.
12. Energy Monitoring and Optimization:
. Real-Time Monitoring: Implementing systems that continuously monitor energy consumption can enable dynamic optimization based on the workload and energy constraints.

. Overall, achieving energy efficiency in Al hardware requires a holistic approach involving hardware design, software optimization, algorithmic changes, and system-level considerations. Collaboration between hardware engineers, software developers, and Al researchers is essential to create energy-
efficient Al solutions that align with the goals of sustainability and performance.
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As of my last knowledge update in September 2021, Bill Dally is a prominent computer scientist and electrical engineer known for his work in computer
architecture, particularly in the field of parallel processing and hardware acceleration. He has been involved in various projects and research related to
energy-efficient Al hardware. While | can't provide direct quotes from him, | can offer insights into some of the principles and strategies he might
advocate for making Al hardware more energy-efficient based on his previous work and statements:

1.Architectural Innovation: Dally might emphasize the importance of rethinking the fundamental architecture of Al hardware to optimize for energy
efficiency. He could propose exploring novel architectures that are specifically designed for Al workloads, leveraging concepts such as dataflow and
specialized accelerators.

2.Reduced Precision Computing: Dally could advocate for the use of reduced-precision arithmetic (such as 8-bit or even lower) for Al computations. This
approach can significantly reduce energy consumption while maintaining acceptable levels of accuracy in neural network computations.
3.Hardware-Software Co-Design: Dally might stress the significance of collaboration between hardware and software teams. He could suggest that close
cooperation between these two groups is crucial for tailoring hardware designs to efficiently execute the types of computations commonly found in Al
workloads.

4.Sparsity and Pruning: Dally could propose the integration of techniques like weight pruning and sparsity in neural networks. By eliminating unnecessary
parameters and operations, Al hardware can be used more efficiently, resulting in reduced energy consumption.

5.Memory Hierarchy Optimization: Given Dally's expertise in parallel processing and memory systems, he might emphasize designing memory
hierarchies that are optimized for Al workloads. Efficient memory access can lead to reduced energy overhead.

6.Hybrid Computing: Dally could suggest exploring hybrid computing approaches that combine general-purpose processors with specialized Al
accelerators. This could involve offloading specific Al tasks to dedicated hardware components, thereby improving energy efficiency.

7.Dynamic Voltage and Frequency Scaling (DVFS): Given his background, Dally might discuss the importance of dynamic voltage and frequency scaling to
adapt hardware performance based on the current workload, leading to energy savings.

8.Efficient Communication: Dally could highlight the significance of minimizing data movement between different components of the hardware. Efficient
communication mechanisms can prevent energy waste due to unnecessary data transfers.

9.Energy-Efficient Interconnects: Dally could propose using energy-efficient interconnect architectures to reduce the energy consumed in data
transmission within the hardware.

10.Power Management Techniques: Dally might discuss power gating, where inactive components are temporarily powered off to save energy, as well as
the importance of fine-tuned power management strategies.

Please note that these are speculative insights based on Bill Dally's previous work and contributions to the field of computer architecture. For the most

up-to-date and accurate information, it's recommended to refer to his recent publications, talks, or interviews.
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Deep Learning was Enabled by Hardware
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Petaflop/s — Days Training

Deep Learning is Gated by Hardware
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V. Reduce voltage - to the point it starts getting too slow
» ~0.5V today
e 2XxVs0.7v,4x vs 1.0v

» Too slow when leakage or cost excessive
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C: Three components

e Communication (~100fJ/b-mm on-chip)
« Memory (~50fJ/b for small RAM)
e Operations (~1fJ/b for add)
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A Prescription

Do
Less (fewer operations)

It With smaller data (movement cheaper, math cheaper?)
Locally (less movement)

Combinationally (flops burn energy)

It sparsely

NVIDIA



Do Less



Do Less Overhead

Area is proportional to energy —all 28nm

16b Int Add, 32fJ

OOO CPU Instruction - 250pJ (99.99% overhead, ARM A-15)

Evangelos Vasilakis. 2015. An Instruction Level Energy Characterization of Arm Processors. Foundation of Research and Technology Hellas, Inst. of Computer Science,
Tech. Rep. FORTH-ICS/TR-450 (2015)




Specialized Instructions Amortize Overhead

Operation Energy™® Overhead”
HFMA 1.5pJ 2000%
HDP4A 6.0pJ 500%
HMMA 110pJ 22%
IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch - 30pJ
**Energy numbers from 45nm process



Communication-Efficient Algorithms
Don't minimize big-0 ops, minimize cost.

An add is worth 10um of movement



Do 1t with Smaller Data
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INt8
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Symbol Representation (Codebook)
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Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv 2015 I NVIDIA I
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Weight distribution of layer 1 (PTB small)
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- Log Numbers
- Multiplies are cheap - just an add
- Adds are hard — convert to integer, add, convert back 4 3
- Fractional part of log is a look
Integer part of log s 3 Shift

- Can factor the lookup outside the summation
- Only convert back after summation (and NLF)
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Welght Layer #17 Lo Welght Layer #45
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INT4 Quantization VSQ Scale Factors
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Do it Locally



Do it Locally

Cost of an add (1fJ/bit) = Cost of going 10um.



The Importance of Staying Local

LPDDR DRAM

GB

l 640pJ/word

On-Chip SRAM
MB

l 50pJ/word

Local SRAM

KB

l 5pJd/word
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Message-Driven Processing
One Communication, Many Operations
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Many-Hot Recommenders

NEURAL RECOMMENDER ENGINE

Linear layers
Data parallel
Replicated across GPUs
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28mm

* 48mm round trip on GPU die
* 4.8pJ/b @ 100fJ/b-mm

* 16mm round trip on DRAM die
* 1.6pJ/b
» Part of 5pJ/b access
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Do 1t Combinationally



Do 1t Combinationally

Cost of an add ~ Cost of a flip flop (1fJ/b)






Do It Sparsely
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Zero Gating

Implemented in NVDLA 2014




EIE

Pointer Read — Arithmetic Unit Act R/W

<ANVIDIA. I



Weight FIFO
(sparse)

\\_ \\'I'I

Coordinate
Computation

indices

|IARAM
(sparse)

indices

)

FxI multiplier array

OARAM
(sparse)
indices

PPU:

Halos
RelLU

Compress

F =
//
S
E <> Buffer bank
D
F*l | ®
7 £
: 4R
<
| Buffer bank
N,

A accumulator buffers

Neighbors

NVIDIA




1.2

0.8

0.6

Energy

0.4

0.2

0.1/0.1 0.2/0.2 0.3/0.3 0.4/0.4 0.5/0.5 0.6/0.6 0.7/0.7 0.8/0.8 0.9/0.9 1.0/1.0
Weight / Activation Density

= DCNN
= DCNN-opt
= SCNN

<A NVIDIA. I



Structured Sparsity

Sparse Tensor

Input activations
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NVIDIA A100 Tensor Core GPU Architecture whitepaper <A NVIDIA. I


https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf

Conclusion



Conclusion

1 2
E=1cv

V< - Reduce V until it gets too slow (~0.5V)
C - Communication (100fJ/b-mm), Memory (50fJ/b), Operations (Add - 1fJ/b)

Do
Less — overhead, communication

Use small numbers - scale, clip, log rep
Locally — message-driven, careful placement, NUMA

Combinationally - flop ~= add
Sparsely - but beware the overhead

There are several orders of magnitude left, but it's getting harder
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