ASPEN: Acceleration of Visual-Inertial Odometry for Extended Reality on an FPGA

Kathleen Feng

Stanford University

31 August 2023

Augmented Reality (AR): overlay of digital information on real world, supplements reality

Virtual Reality (VR): full immersion into computer-generated environment, opaque displays and sensory input

Mixed Reality (MR): manipulation of both physical and virtual items, interaction with real world and virtual environment

Extended Reality (XR): umbrella term for AR+VR+MR

Extended Reality Pipeline

- 1. Performance:
 - Motion-to-photon (MTP) latency: under 20 ms (VR), 7 ms (AR)
 - Throughput: ideally 100 gigapixels/s

- 1. Performance:
 - Motion-to-photon (MTP) latency: under 20 ms (VR), 7 ms (AR)
 - Throughput: ideally 100 gigapixels/s
- 2. Power:
 - Power budget: under 1-2 W (VR), 0.1-0.2 W (AR)

- 1. Performance:
 - Motion-to-photon (MTP) latency: under 20 ms (VR), 7 ms (AR)
 - Throughput: ideally 100 gigapixels/s
- 2. Power:
 - Power budget: under 1-2 W (VR), 0.1-0.2 W (AR)
- 3. Quality:
 - Accuracy in subtasks: visual-inertial odometry, eye gaze estimation
 - User experience: interaction, responsiveness,...

Current State of Commerical XR Systems

	Ideal	Varjo VR-3	Quest 2	HoloLens 2	Quest Pro
Usage	-	VR	VR	MR	MR
Resolution (MPixels)	400	15.7	7.0	4.4	6.9
Refresh Rate (Hz)	240	90	90	120	90
MTP latency (ms)	< 20 (VR)	< 20	N/A	< 9	N/A
	< 7 (AR)				
Power (W)	< 1-2 (VR)	N/A	N/A	> 7	N/A
	< 0.1-0.2 (AR)				
Mass (g)	100-200	944	503	566	722

CPU Processing Time Breakdown

VIO: Visual-Inertial Odometry

Calculates 3D user position from sensors

- IMUs, cameras \Rightarrow ($x, y, z, \theta, \phi, \psi$)
- Most dominating subtask, represents $\sim 40\%$ of XR workload

Using OpenVINS as gold model [https://docs.openvins.com/index.html]

VIO: Visual-Inertial Odometry

Visual Pipeline

- 1. Extract features (if needed) from previous frame
- 2. Track features between previous and current frame

Visual Pipeline

- 1. Extract features (if needed) from previous frame
- 2. Track features between previous and current frame

IMU Pipeline

Provides fast state updates between camera frames

State Update

Features two update paths for two sets of features

- 1. MSCKF features: newer, freshly extracted features
- 2. SLAM features: features that have appeared in several consecutive frames

State Update

Features two update paths for two sets of features

- 1. MSCKF features: newer, freshly extracted features
- 2. SLAM features: features that have appeared in several consecutive frames

FPGA Acceleration

Currently prototyping accelerator on Xilinx Versal VCK190 FPGA

- Using Vitis HLS to implement vision and IMU pipelines on reconfigurable fabric
- On-board application processor performing all other computation
- In the process of testing end-to-end application on FPGA

Visual Pipeline Optimizations

- Switched almost everything to integer
- Absolute trajectory error: difference between the estimated trajectory and groundtruth after it has been aligned

$$e_{ATE} = \sqrt{rac{1}{\mathcal{K}}\sum_{k=1}^{\mathcal{K}}||\mathbf{x}_{k,i} \boxminus \hat{\mathbf{x}}_{k,i}^+||_2^2}$$

	Orientation Error (Θ)	Position Error (m)
TUM VI Room 1 (orig)	1.451	0.056
TUM VI Room 1 (int)	1.854	0.054
TUM VI Room 2 (orig)	1.448	0.071
TUM VI Room 2 (int)	1.422	0.074
TUM VI Room 3 (orig)	1.354	0.061
TUM VI Room 3 (int)	1.428	0.076

FPGA Results

For a 512 \times 512 input image

	Vision	IMU
Clock Period	12 ns	8 ns
BRAM	243 (12%)	16 (~0%)
DSP	1559 (79%)	756 (38%)
FF	230272 (12%)	64032 (3%)
LUT	553169 (61%)	99706 (11%)
URAM	21 (4%)	0 (0%)

Visual Pipeline Preliminary Latency per Kernel

For a 512 \times 512 input image

- $\checkmark\,$ Functionally correct
- $\times~$ Optimization in progress

	Clock (ns)	Cycles	Latency (ms)
Histogram Equalization	5	771630	3.86
FAST corner detection	12	1202358	14.4
Pyramid Generation $+$ Optical Flow	12	10587926	127
Undistortion	5	43249	0.216
RANSAC	5	2915580	14.6
Estimated Total			~ 290

IMU Pipeline Preliminary Latency

Batching 11 IMU measurements together

- $\checkmark\,$ Functionally correct
- \checkmark Optimized

	Clock (ns)	Cycles	Latency (ms)
IMU pipeline	5.3	1285844	6.82

Future Plans

- 1. Continue to improve on FPGA prototype
- 2. Develop and tapeout SoC for accelerating visual-inertial odometry and rest of perception pipeline in November
- **3.** Evaluate performance/power/quality benefit of accelerator in context of entire XR application pipeline
- 4. Research further into the other pipelines (visual and audio) and integrate with the perception pipeline accelerator