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Motivation - Multi-Task Workloads

Dynamic

Pipelined

Concurrent

Latency-Critical

=> Exploit Dynamic Partial Reconfiguration of CGRA to adapt to such workloads
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Architecture - Fast DPR & Flexible Resource Allocation

Fast DPR allows a rapid change of underlying kernel

Flexible resource allocation of MEM units and PE units increases 
resource utilization
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Compiler - Various Kernel Variants

Compiler prepares several versions of the single kernel (Variants)
- different hardware resources
- different runtime
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Runtime - Resource-Aware Scheduler

Scheduler selects one of the kernel variants at runtime based on
- remaining runtime requirements
- resource availability
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Simulator - Python-Based Performance Simulator

Performance simulator allows easy exploration of CGRA and scheduler
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Result - Image Processing + ML Workload
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Lane detection + Object detection

1.6x speedup with
- DPR & flexible resource allocation
- resource-aware scheduler



Thank You
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Scorch 
A library for sparse machine learning
Bobby Yan*, Alexander J. Root*, Trevor Gale*†, Fredrik Kjolstad* 
*Stanford University, †Google Research 
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Sparsity comes from data and model design

Mixture of experts

Graph neural networks

Sparse transformers

Recommender systems
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Programming model landscape is fragmented

torch.sparse tf.sparse PyG DGL

TVM MLIR Sparse cuSPARSE MKL-DNN

jax.sparse
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Programming model landscape can be unified

torch.sparse tf.sparse PyG DGL

TVM MLIR Sparse cuSPARSE MKL-DNN

jax.sparse

Scorch



Compiling Declarative 
Recurrences To Imperative 
Code Shiv Sundram, Muhammad Usman Tariq, 

Fred Kjolstad
August 2023
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Three classes of algorithms

Linear Solvers 
(LU, Cholesky)
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Three classes of algorithms

Dynamic Programs 
(Sequence Alignment, Bellman)

Linear Solvers 
(LU, Cholesky)
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Three classes of algorithms

Graph Algorithms 
(Floyd-Warshall, Viterbi)

Dynamic Programs 
(Sequence Alignment, Bellman)

Linear Solvers 
(LU, Cholesky)
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All expressible in a common language
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All expressible in a common language
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All expressible in a common language
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All expressible in a common language
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DSL for Recurrences 

+Emit parallel C code

+Sparsity

+Loop ordering 
(nontrivial for recurrences)

+Loop-fusion
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DSL for Recurrences 

+Emit parallel C code

+Sparsity

+Loop ordering 
(nontrivial for recurrences)

+Loop-fusion

• Viterbi Equation (info. theory)

• Floyd-Warshall (shortest paths)

• Needleman-Wunsch (seq. alignment)

• Cholesky Decomposition (direct solver)

• Gauss-Seidel (iterative solver)

• Tensor Algebra (tensor algebra)

Performance improvements or parity 
with existing libraries
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Compiling Sparse Machine Learning to 
Streaming Dataflow

Rubens Lacouture, Olivia Hsu, Nathan Zhang, Ritvik 

Sharma, Kunle Olukotun, Fred Kjolstad
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Expressing ML Applications in SAM

• Prior work, Sparse Abstract Machine (SAM), is not enough to 
express sparse ML 



Expressing ML Applications in SAM

• Augment SAM to support the large space of sparse ML
• New hardware primitives 
• DL framework, new compiler optimizations 
• Faster concurrent simulation platform

• Leverage its tensor algebra compilation capabilities
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Expressing ML Applications in SAM

So now it can
Attn=softmax(⍺Q*KT)*V

PyTorch

TorchScript
Parse

PyTorch IROptimize

Lower

DL CompilerOptimize

SAM
Extended

Sparse ML Dataflow
AcceleratorSimulator

• SpMM
• SDDMM
• SpMV
• Slicing
• Reshape/transpose
• Data/mask generator  

• 3-Tensor multiplication 
• 4-Tensor multiplication
• Tensor addition
• Slicing
• Reshape/transpose/split/concat
• Array programming
• Data/mask generator  

What do we need?

• We explored these state-of-the-art models:
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Transformers GNNs

Not in SAM
Supported in SAM extended



Reuse and Traffic with Tiling for 
Sparse Accelerators

Ritvik Sharma, Olivia Hsu, Max Strange, Rubens 
Lacouture, Fred Kjolstad, Mark Horowitz



Reuse and Traffic with Tiling for Sparse Accelerators

A sparse accelerator’s traffic vs it’s optimal memory traffic (red dots)

Odemuyiwa et al, Dynamic Reflexive Tiling: ASPLOS 2023



Reuse and Traffic with Tiling for Sparse Accelerators

Different Tiling Strategies

Static Coord Space Static Position Space Dynamic Coord Space



Reuse and Traffic with Tiling for Sparse Accelerators

• Extending our sparse framework to support different tiling strategies
• Optimize tiling for improved memory reuse & traffic based on collected 

statistics for suitesparse matrices

Suitesparse matrices data distributionSAM primitives and graphs for Tiling



Sparse Shape Operators

Alexander J. Root, Bobby Yan, Peiming Liu, Aart Bik, Fredrik Kjolstad



Array programming is ubiquitous 



Sparse arrays are used across many domains 



Array shapes are often manipulated



Shape operators



Sparse shape operator support is sparse

● Limited data structure support

● Lacking fusion across function calls



Sparse shape operator support is sparse

Sparse 
Formats

Reshape Concatenate Slice Fusion

scipy.sparse

Looplets

TACO

Burrito



Program Synthesis is a 
Powerful Technique!

0| input x : BV[16] 
1| input y : BV[16] 
2| input z : BV[16] 
3| r0 = ir.mul(y,z) 
4| r1 = ir.add(x,r0) 
5| return r1

Program 
Synthesis

Program 
Specification



Satisfiability Modulo Theory 
(SMT) Solvers Enable 

Efficient Program Synthesis



Using Program 
Synthesis in AHA?



Generate

CGRA Executable

Specification 
of IR

Specification 
of PE

CGRA Executable

Application

Lower to 
IR

Instruction 
Selection

Scheduling + 
Allocation

Assembly

Compiler
AHA Goal: Automatically 
Generate CGRA Compiler



Program 
Synthesis

CGRA Executable

Specification 
of IR

Specification 
of PE

CGRA Executable

Application

Lower to 
IR

Instruction 
Selection

Scheduling + 
Allocation

Assembly

Compiler

Use Program Synthesis to  
Generate Instruction  

Selection Rewrite Rules!



Generalized 
CBPS

ISA-Program 
(size N)KerKerN ISA-  

Instructions

KerKerM IR-
Instructions

IR-Program 
(size M)

Brand New Program 
Synthesis Technique!

Completeness Guaranteed!



Optimizations Provide 
Massive Speedups!

10x 
Speedup!

92x  
Speedup!



Efficiently Synthesizing 
Lowest Cost Rewrite Rules 

for Instruction Selection
Ross Daly



Cascade: An Application Pipelining Toolkit for 
Coarse-Grained Reconfigurable Arrays
Existing CGRA compilers do not produce high 
performance and energy efficient applications

• They lack pipelining resulting in low 
performance or exhaustively pipelining 
resulting in high power

Cascade is an end-to-end compiler which has: 

• An automatic CGRA timing model generator
• A static timing analysis tool for CGRA 

applications
• A large set of existing and novel pipelining 

techniques integrated into an end-to-end flow

PE

MEM PEPE

MEM PE

Critical Path



Improving the Performance of 
Convolutional Neural Networks on CGRAs

Yuchen Mei



Dedicated PnR & Pipelining for CNN on CGRAs

Try to solve limitations 

of CNN on CGRAs:
MEM PE

MEM

PE

PE PE

MEM PE PE

Low Utilization Poor Routability Long Critical Path

by:
Systolic Array Placement PnR-optimized Pipelining MEM Rescheduling



Finch: 
A Placement and Routing Visualization 
and Editing Tool for Coarse-Grained 
Reconfigurable Arrays
Zhouhua Xie, Kalhan Koul, Jackson Melchert, Priyanka Raina

AHA Retreat 2023 Lightning Talk



Current Challenge
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Difficulty in Place & Route 
(P&R) for CGRA physical 
design:
• Inhomogeneous resource 

distribution

• Limited resources on 
placement and routing

• Complex design space

Imperfect P&R Algorithm 
for CGRA

Problem Example:
Scattered Placement



Finch
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DisplayPlacement Routing
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Primary Use Cases

• Editing for Last Mile 
Improvement

• Design Analysis
• Application Design 

Prototyping
• P&R Algorithm Analysis



Incorporating Formal Translation Validation into 
CGRA Compilers
• AHA tools have enabled agile hardware/software codesign
• Verification is still painful and a better solution exists:

Formal translation validation of our CGRA compiler

• Will enable faster, more extensive verification that decreases 
debugging time and increases productivity





An Abstract Calculus for Optimization Modulo Theories
Nestan Tsiskaridze 1 Clark Barrett 1 Cesare Tinelli 2

1 Stanford University 2 The University of Iowa

Applications
Scheduling/Planning with Resources
Requirements Engineering/Specification Synthesis 
System Design/Configuration 
Formal Verification/Model Checking
Program Analysis     Security Analysis
Machine Learning
Quantum Annealing
…

Satisfiability Modulo Theories (SMT)
Powerful Search Engines
The Abstract DPLL(T) Calculus for SMT:

Superior

Efficiency
+

Expressiveness 
+ 

Flexibility

Image Source: 1930 – Express Coffee Machine Set – A. Torriani – Patent (https://www.etsy.com/shop/InkedPatentPrints)

Optimization Modulo Theories (OMT)
An Abstract OMT Calculus:
A foundation for theoretical understanding 
and research
A blueprint for practical implementations

Find me to Learn HOW!



Rapid Integration of Flow IP 
with Agile Physical Design 

Tools
Alex Carsello, Christopher Torng, Mark Horowitz



Agile PD Tools Struggle to Facilitate Reuse at Scale

● Agile PD Tools aim to reduce PD effort by providing reusable modular flows with 
customization for design/tech

○ Mflowgen, Silicon Compiler, HAMMER

Small-Scale reuse:

● Small teams with established communication channels
● Limited scope/complexity
● Existing tools work well

Reuse at scale:

● Node produced by one team and used by another
● Little-to-no communication
● Different projects/complexity
● Effort required to use IP may exceed effort required to develop your own



Testing is the Answer

● Augment mflowgen Node primitive with tests

○ Tests can attach to any PD flow graph

● Test specify where in the flow they need to run

● Tests tell mflowgen where it can reduce effort or 
skip steps entirely to get test results faster

● Tests can span multiple hierarchies/subgraphs

● Talk to me at my poster to learn more!



USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools
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Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design
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of experience
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domain enthusiasts 
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of experience
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Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

1 Hardware
experts with
~5-20+ years 
of experience

CPU

TPU

Accelerators

Specification

TapeoutDevelopment Time

RTL Design
Verification

Physical Design and Impl

A specific design 
methodology

Software Stack
Architecture

VLSI
Technology

... who are also 

domain enthusiasts 
with ~1 year or less 
of experience

A specific way that things have always been done



USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design
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a very different world of hardware design

2 Application domain 
experts

with ~1 year or less 
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hardware design

... whose primary jobs are
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    Video Coding
    Cryptography 
    Wireless

Domain Experts
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Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

2 Application domain 
experts

with ~1 year or less 
of experience with 
hardware design

... whose primary jobs are

    Machine Learning
    Image Processing
    Video Coding
    Cryptography 
    Wireless

Specification

TapeoutDevelopment Time

RTL Design
Verification

Physical Design and Impl

Key Question: Do our existing methods work?
Software Stack

Architecture
VLSI

Technology

Does the stack 
need to change 
to "hide" more?

Domain Experts



USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

2 Application domain 
experts

with ~1 year or less 
of experience with 
hardware design

... whose primary jobs are

    Machine Learning
    Image Processing
    Video Coding
    Cryptography 
    Wireless

Domain Experts

Avanergy is a new abstraction that numerically 
systematizes energy-aware design-space exploration
in a way that future automated tools can build upon it



Automatic Discovery of Late Stage Timing Bugs

Raj Setaluri, Christopher Torng

Automatically find timing bugs using formal tools

Complex chips have timing bugs

Amber

Timing constraints

GLS

STA

Timing bugs still exist!

Why do these bugs happen?

Timing bugs are needles in a haystack



ASPEN: Acceleration of Visual-Inertial Odometry for

Extended Reality on an FPGA

Kathleen Feng

30 August 2023
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Extended Reality Pipeline

Perception
Pipeline

Hand/Eye 
Tracking

Visual-Inertial 
Odometry

Scene
Reconstruction

Visual Pipeline

Audio Pipeline

Camera, IMUs, 
Depth Camera 

Mic

Application 
Rendering

Post-
Processing

Display

Recording Encoding Playback
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CPU Performance Breakdown

Source: ILLIXR [Huzaifa 2021]

3



VIO: Visual Inertial Odometry

Calculates 3D user position from sensors

• IMUs, cameras ) (x , y , z , ✓,�, )

• Most dominating subtask, represents ⇠ 40% of XR workload

Left

Forward

Roll

Yaw

Pitch

Up

Using OpenVINS as gold model [https://docs.openvins.com/index.html]
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https://docs.openvins.com/index.html


A Fast Large-Integer Extended GCD 
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng



A Fast Large-Integer Extended GCD 
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Target 
Platform

Algorithm 
Choice

Application
Requirements

XGCD Design Space



A Fast Large-Integer Extended GCD 
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Target 
Platform

Algorithm 
Choice

Application
Requirements

XGCD Design Space

Onyx



Interrupt-driven MLSD-based Links

1

Channel!! !!Nonlinear 
Equalization

Linear 
Equalization

Channel!! Error 
Checker

Linear 
EQ !!

Error Corrector

FIFO
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Zach Myers, Stanford VLSI Group



Co-Designing AI Models and Embedded 
DRAMs for Efficient On-Device ML Training

Thierry Tambe



Weights are transient, Activations are transient, Gradients are transient

Data transience is pervasive

2

Computational 
graph of DL training



eDRAM as main on-chip storage medium
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+ Denser than SRAM 

+ Lower access energy than SRAM

+ Can be made multi-level

- Activations must be buffered for duration of fwd and bwd passes

- Retention time in order of a few microseconds



Algorithm-System Co-Design for eDRAM-based 
Computing
 

Algorithms
HW 

Architecture

eDRAM
Architecture 
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On-Chip ML Training
with Refresh-Free 

eDRAMs



Reversible neural networks to avoid buffering 
activations 
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Equations during the 
training process

Operations during 
backward pass

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Activations x1 and x2  are 
recomputed instead of 
being loaded from mem

Input

Output

Softmax

Reversible
Block

Reversible
Block

po
ol

in
g

po
ol

in
g

x2

y

+

x1

+

F2

F1

Concatenate

+

x

y
Pretrained 
DNN Block

Pretrained 
DNN Block

B
ackbone D

N
N

Trainable 
Branch DNN

pooling

F3

Duplex DNN (DuDNN) with reversible branch that obviates 
buffering activations in memory for BWD pass 

Reversible
Block

Step 1: Recompute 
the input x using y

y

x

Reversible
Block

Step 2: Compute gradients 
and update weights

gout

w=F(gout, x)



Interleaved memory access patterns to promote 
implicit refresh

x1/y1 x2/y2 g1 g2
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x1/y1

x2/y2 g1 g2



ASIC co-design to minimize data lifetime
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Thank you!
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