Using a CGRA with Dynamic Partial Reconfiguration

Taeyoung Kong

Kalhan Koul, Priyanka Raina, Mark Horowitz, and Christopher Torng

Stanford University

Stanford University

Motivation - Multi-Task Workloads

=> Exploit Dynamic Partial Reconfiguration of CGRA to adapt to such workloads

Architecture - Fast DPR & Flexible Resource Allocation

Fast DPR allows a rapid change of underlying kernel

Flexible resource allocation of MEM units and PE units increases resource utilization

Compiler - Various Kernel Variants

Compiler prepares several versions of the single kernel (Variants)

- different hardware resources
- different runtime

Runtime - Resource-Aware Scheduler

Scheduler selects one of the kernel variants at runtime based on

- remaining runtime requirements
- resource availability

Simulator - Python-Based Performance Simulator

Performance simulator allows easy exploration of CGRA and scheduler

Result - Image Processing + ML Workload

Lane detection + Object detection

1.6x speedup with

- DPR & flexible resource allocation
- resource-aware scheduler

Thank You

Scorch A library for sparse machine learning

Bobby Yan*, Alexander J. Root*, Trevor Gale*⁺, Fredrik Kjolstad* *Stanford University, ⁺Google Research

AHA Retreat 2023 Lightning Talk | August 30, 2023

Sparsity comes from data and model design

Graph neural networks

Stanford | Computer Science

_ _ _ _

Recommender systems

2

Programming model landscape is fragmented

tf.sparse

jax.sparse

Stanford | Computer Science

DGL

3

Programming model landscape can be unified

jax.sparse

Stanford Computer Science

PyG

DGL

Compiling Declarative Recurrences To Imperative Code Shiv Sundram, Muhammad Usman Tariq, Fred Kjolstad

August 2023

<u>szenni</u>gral Uni versiinv

Three classes of algorithms

1 <u>Linear Solvers</u> (LU, Cholesky)

2

Three classes of algorithms

- 1 <u>Linear Solvers</u> (LU, Cholesky)
- 2 <u>Dynamic Programs</u> (Sequence Alignment, Bellman)

Three classes of algorithms

- 1 <u>Linear Solvers</u> (LU, Cholesky)
- 2 <u>Dynamic Programs</u> (Sequence Alignment, Bellman)
- 3 <u>Graph Algorithms</u> (Floyd-Warshall, Viterbi)

Recurrence Equations
$$L_{ij} = (A_{ij} - \sum_{k=0}^{j} L_{ik}L_{jk})/L_{jj}$$
 $: j < i$ $L_{ij} = \sqrt{A_{ij} - \sum_{k=0}^{j} L_{jk}L_{jk}}$ $: j = i$

Recurrence Equations
$$L_{ij} = (A_{ij} - \sum_{k=0}^{j} L_{ik}L_{jk})/L_{jj}$$
 $: j < i$ $L_{ij} = \sqrt{A_{ij} - \sum_{k=0}^{j} L_{jk}L_{jk}}$ $: j = i$

Schedule

loop ordering parallelization

Storage

Dense (row/column major) Sparse (CSR) Sparse (CSC)

DSL for Recurrences

+Emit parallel C code

+Sparsity

+Loop ordering (nontrivial for recurrences)

+Loop-fusion

DSL for Recurrences

+Emit parallel C code

+Sparsity

+Loop ordering (nontrivial for recurrences)

+Loop-fusion

- Viterbi Equation (info. theory)
- Floyd-Warshall (shortest paths)
- Needleman-Wunsch (seq. alignment)
- Cholesky Decomposition (direct solver)
- Gauss-Seidel (iterative solver)
- Tensor Algebra (tensor algebra)

Performance improvements or parity with existing libraries

Compiling Sparse Machine Learning to Streaming Dataflow

Rubens Lacouture, Olivia Hsu, Nathan Zhang, Ritvik

Sharma, Kunle Olukotun, Fred Kjolstad

Expressing ML Applications in SAM

• Prior work, Sparse Abstract Machine (SAM), is not enough to express sparse ML

We explored these state-of-the-art models:

Expressing ML Applications in SAM

- Augment SAM to support the large space of sparse ML
 - New hardware primitives
 - DL framework, new compiler optimizations
 - Faster concurrent simulation platform
- Leverage its tensor algebra compilation capabilities

Expressing ML Applications in SAM

So now it can

Reuse and Traffic with Tiling for Sparse Accelerators

Ritvik Sharma, Olivia Hsu, Max Strange, Rubens Lacouture, Fred Kjolstad, Mark Horowitz

University

Reuse and Traffic with Tiling for Sparse Accelerators

A sparse accelerator's traffic vs it's optimal memory traffic (red dots)

Stanford University

Odemuyiwa et al, Dynamic Reflexive Tiling: ASPLOS 2023

Reuse and Traffic with Tiling for Sparse Accelerators

Different Tiling Strategies

Reuse and Traffic with Tiling for Sparse Accelerators

- Extending our sparse framework to support different tiling strategies
- Optimize tiling for improved memory reuse & traffic based on collected statistics for suitesparse matrices

SAM primitives and graphs for Tiling

Suitesparse matrices data distribution

Sparse Shape Operators

Alexander J. Root, Bobby Yan, Peiming Liu, Aart Bik, Fredrik Kjolstad

Array programming is ubiquitous

Sparse arrays are used across many domains

Array shapes are often manipulated

$$b = \begin{bmatrix} X & 0 & 0 \\ 0 & Y & 0 \\ 0 & 0 & Z \end{bmatrix} a$$

Shape operators

Sparse shape operator support is sparse OPyTorch

- Limited data structure support
- Lacking fusion across function calls
Sparse shape operator support is sparse

Program Synthesis is a Powerful Technique!

Satisfiability Modulo Theory (SMT) Solvers Enable Efficient Program Synthesis

Using Program Synthesis in AHA?

Brand New Program Synthesis Technique!

Completeness Guaranteed!

Optimizations Provide Massive Speedups!

10x Speedup!

92x Speedup!

Efficiently Synthesizing Lowest Cost Rewrite Rules for Instruction Selection Ross Daly

Cascade: An Application Pipelining Toolkit for Coarse-Grained Reconfigurable Arrays

Existing CGRA compilers do not produce high performance and energy efficient applications

• They lack pipelining resulting in low performance or exhaustively pipelining resulting in high power

Cascade is an end-to-end compiler which has:

- An automatic CGRA timing model generator
- A static timing analysis tool for CGRA applications
- A large set of existing and novel pipelining techniques integrated into an end-to-end flow

Improving the Performance of Convolutional Neural Networks on CGRAs

Yuchen Mei

Stanford Universit

Dedicated PnR & Pipelining for CNN on CGRAs

Try to solve limitations of CNN on CGRAs:

Poor Routability

Long Critical Path

Clockwork

Compiler

by:

Finch: A Placement and Routing Visualization and Editing Tool for Coarse-Grained Reconfigurable Arrays

Zhouhua Xie, Kalhan Koul, Jackson Melchert, Priyanka Raina

AHA Retreat 2023 Lightning Talk

Stanford University

Current Challenge

Difficulty in Place & Route (P&R) for CGRA physical design:

- **Inhomogeneous** resource distribution
- **Limited** resources on placement and routing
- Complex design space

Imperfect P&R Algorithm for CGRA

Problem Example: Scattered Placement

Finch

Primary Use Cases

- Editing for Last Mile Improvement
- Design Analysis
- Application Design Prototyping
- P&R Algorithm Analysis

Incorporating Formal Translation Validation into CGRA Compilers

- AHA tools have enabled agile hardware/software codesign
- Verification is still painful and a better solution exists:

Formal translation validation of our CGRA compiler

• Will enable faster, more extensive verification that decreases debugging time and increases productivity

We present *Self-Driven Strategy Learning*, an **online learning** method for **automated reasoning tasks** that involve solving a set of related problem

Executions of Bounded Model Checking with and without SDSL

SDSL invests time learning a good solving strategy in the beginning, which results in better performance when solving later problems.

Lightweight Online Learning for Sets of Related Problems in Automated Reasoning

Haoze (Andrew) Wu Christopher Hahn Stanford Univ. Stanford Univ. Florian Lonsing Unaffiliated

Makai Mann R MIT Lincoln Lab

Raghuram Ramanujan Davidson College Clark Barrett Stanford Univ.

Stanford An Abstract Calculus for Optimization Modulo Theories

<u>Nestan Tsiskaridze</u>1

Clark Barrett¹

¹Stanford University

Cesare Tinelli²

²The University of Iowa

Satisfiability Modulo Theories (SMT)

Powerful Search Engines

The Abstract DPLL(T) Calculus for SMT:

Optimization Modulo Theories (OMT)

An Abstract OMT Calculus:

A **foundation** for theoretical understanding and research

A **blueprint** for practical implementations

Applications

. . .

Scheduling/Planning with Resources Requirements Engineering/Specification Synthesis System Design/Configuration Formal Verification/Model Checking Program Analysis Security Analysis Machine Learning Quantum Annealing

Find me to Learn HOW!

Rapid Integration of Flow IP with Agile Physical Design Tools

Alex Carsello, Christopher Torng, Mark Horowitz

Agile PD Tools Struggle to Facilitate Reuse at Scale

- Agile PD Tools aim to reduce PD effort by providing reusable modular flows with customization for design/tech
 - Mflowgen, Silicon Compiler, HAMMER

Small-Scale reuse:

- Small teams with established communication channels
- Limited scope/complexity
- Existing tools work well

Reuse at scale:

- Node produced by one team and used by another
- Little-to-no communication
- Different projects/complexity
- Effort required to use IP may exceed effort required to develop your own

Testing is the Answer

- Augment mflowgen Node primitive with tests
 - Tests can attach to any PD flow graph
- Test specify where in the flow they need to run
- Tests tell mflowgen where it can reduce effort or skip steps entirely to get test results faster
- Tests can span multiple hierarchies/subgraphs
- Talk to me at my poster to learn more!

test: <pointer graph="" test="" to=""></pointer>
attach_points: PLACE, CTS, ROUTE
<pre>express_mode: skip_opt</pre>
+
custom-power-hierarchical
globalnetconnect.tcl power-strategy-dualmesh.tcl

Avanergy: An Architecture-VLSI Abstraction for **USC** Automated Energy-Aware Design-Space Exploration Tools Avanergy: An Architecture-VLSI Abstraction for WUSC Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

Avanergy: An Architecture-VLSI Abstraction for WUS Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

Hardware
 experts with
 ~5-20+ years
 of experience

CPU TPU

Accelerators

... who are also

domain enthusiasts with ~1 year or less of experience

Avanergy: An Architecture-VLSI Abstraction for WUS Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

A specific way that things have always been done

... who are also

domain enthusiasts with ~1 year or less of experience

Avanergy: An Architecture-VLSI Abstraction for WUSC Automated Energy-Aware Design-Space Exploration Tools

Christopher Torng

a very different world of hardware design

USC

A specific way that things have always been done

... who are also

of experience

domain enthusiasts

with ~1 year or less

A specific design methodology

Avanergy: An Architecture-VLSI Abstraction for WUSC Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

Avanergy: An Architecture-VLSI Abstraction for WUS Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

Application domain experts

with ~1 year or less of experience with hardware design

... whose primary jobs are

Machine Learning Image Processing Video Coding Cryptography Wireless

Domain Experts

Avanergy: An Architecture-VLSI Abstraction for WUS Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

Key Question: Do our existing methods work?

Specification

 RTL Design

 Verification

 Development Time
 Physical Design and Impl

Domain Experts

Avanergy: An Architecture-VLSI Abstraction for WUSC Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

Avanergy: An Architecture-VLSI Abstraction for WUS Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

Application domain experts

with ~1 year or less of experience with hardware design

... whose primary jobs are

Machine Learning Image Processing Video Coding Cryptography Wireless

Domain Experts

Avanergy is a new **abstraction** that numerically systematizes energy-aware design-space exploration in a way that future automated tools can build upon it

Automatic Discovery of Late Stage Timing Bugs

Raj Setaluri, Christopher Torng

Complex chips have timing bugs

Why do these bugs happen?

```
set_multicycle_path 3
  -from Q0 -to Q1 -setup
```


Static timing analysis

Timing bugs are needles in a haystack

Automatically find timing bugs using formal tools

ASPEN: Acceleration of Visual-Inertial Odometry for Extended Reality on an FPGA

Kathleen Feng

Stanford University

30 August 2023

Extended Reality Pipeline

CPU Performance Breakdown

VIO: Visual Inertial Odometry

Calculates 3D user position from sensors

- IMUs, cameras \Rightarrow ($x, y, z, \theta, \phi, \psi$)
- Most dominating subtask, represents $\sim 40\%$ of XR workload

Using OpenVINS as gold model [https://docs.openvins.com/index.html]

A Fast Large-Integer Extended GCD Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

A Fast Large-Integer Extended GCD Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

A Fast Large-Integer Extended GCD Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Co-Designing AI Models and Embedded DRAMs for Efficient On-Device ML Training

Thierry Tambe

Data transience is pervasive

Weights are transient, Activations are transient, Gradients are transient

eDRAM as main on-chip storage medium

- + Denser than SRAM
- + Lower access energy than SRAM
- + Can be made multi-level
- Activations must be buffered for duration of fwd and bwd passes
- Retention time in order of a few microseconds

Algorithm-System Co-Design for eDRAM-based Computing

Reversible neural networks to avoid buffering activations

Interleaved memory access patterns to promote implicit refresh

ASIC co-design to minimize data lifetime

Thank you!