
Using a CGRA with
Dynamic Partial Reconfiguration

Taeyoung Kong
Kalhan Koul, Priyanka Raina, Mark Horowitz, and Christopher Torng

Stanford University

Motivation - Multi-Task Workloads

Dynamic

Pipelined

Concurrent

Latency-Critical

=> Exploit Dynamic Partial Reconfiguration of CGRA to adapt to such workloads

2

Architecture - Fast DPR & Flexible Resource Allocation

Fast DPR allows a rapid change of underlying kernel

Flexible resource allocation of MEM units and PE units increases
resource utilization

3

Compiler - Various Kernel Variants

Compiler prepares several versions of the single kernel (Variants)
- different hardware resources
- different runtime

4

Runtime - Resource-Aware Scheduler

Scheduler selects one of the kernel variants at runtime based on
- remaining runtime requirements
- resource availability

5

Simulator - Python-Based Performance Simulator

Performance simulator allows easy exploration of CGRA and scheduler

6

Result - Image Processing + ML Workload

7

Lane detection + Object detection

1.6x speedup with
- DPR & flexible resource allocation
- resource-aware scheduler

Thank You
8

AHA Retreat 2023 Lightning Talk | August 30, 2023

Scorch
A library for sparse machine learning
Bobby Yan*, Alexander J. Root*, Trevor Gale*†, Fredrik Kjolstad*
*Stanford University, †Google Research

2

Sparsity comes from data and model design

Mixture of experts

Graph neural networks

Sparse transformers

Recommender systems

3

Programming model landscape is fragmented

torch.sparse tf.sparse PyG DGL

TVM MLIR Sparse cuSPARSE MKL-DNN

jax.sparse

4

Programming model landscape can be unified

torch.sparse tf.sparse PyG DGL

TVM MLIR Sparse cuSPARSE MKL-DNN

jax.sparse

Scorch

Compiling Declarative
Recurrences To Imperative
Code Shiv Sundram, Muhammad Usman Tariq,

Fred Kjolstad
August 2023

1

2

3

Three classes of algorithms

Linear Solvers
(LU, Cholesky)

2

1

2

3

Three classes of algorithms

Dynamic Programs
(Sequence Alignment, Bellman)

Linear Solvers
(LU, Cholesky)

3

1

2

3

Three classes of algorithms

Graph Algorithms
(Floyd-Warshall, Viterbi)

Dynamic Programs
(Sequence Alignment, Bellman)

Linear Solvers
(LU, Cholesky)

4

All expressible in a common language

5

All expressible in a common language

6

All expressible in a common language

7

All expressible in a common language

8

DSL for Recurrences

+Emit parallel C code

+Sparsity

+Loop ordering
(nontrivial for recurrences)

+Loop-fusion

9

DSL for Recurrences

+Emit parallel C code

+Sparsity

+Loop ordering
(nontrivial for recurrences)

+Loop-fusion

• Viterbi Equation (info. theory)

• Floyd-Warshall (shortest paths)

• Needleman-Wunsch (seq. alignment)

• Cholesky Decomposition (direct solver)

• Gauss-Seidel (iterative solver)

• Tensor Algebra (tensor algebra)

Performance improvements or parity
with existing libraries

10

Compiling Sparse Machine Learning to
Streaming Dataflow

Rubens Lacouture, Olivia Hsu, Nathan Zhang, Ritvik

Sharma, Kunle Olukotun, Fred Kjolstad

1

Expressing ML Applications in SAM

• Prior work, Sparse Abstract Machine (SAM), is not enough to
express sparse ML

Expressing ML Applications in SAM

• Augment SAM to support the large space of sparse ML
• New hardware primitives
• DL framework, new compiler optimizations
• Faster concurrent simulation platform

• Leverage its tensor algebra compilation capabilities

Filter
f(i,j) = i > j

Triangular lower

icrd

jref

jcrd

icrd

jref

jcrd

Unary ALU
f(x)=exp(x)

Exp

valval3,2,1 exp(3),exp(2),exp(1)

di
m

en
si

on
 i

dimension j

di
m

en
si

on
 i

dimension j
Filter

f(i,j) = i > j
Triangular lower

icrd

jref

jcrd

icrd

jref

jcrd

Unary ALU
f(x)=exp(x)

Exp

valval3,2,1 exp(3),exp(2),exp(1)

di
m

en
si

on
 i

dimension j

di
m

en
si

on
 i

dimension j

Expressing ML Applications in SAM

So now it can
Attn=softmax(⍺Q*KT)*V

PyTorch

TorchScript
Parse

PyTorch IROptimize

Lower

DL CompilerOptimize

SAM
Extended

Sparse ML Dataflow
AcceleratorSimulator

• SpMM
• SDDMM
• SpMV
• Slicing
• Reshape/transpose
• Data/mask generator

• 3-Tensor multiplication
• 4-Tensor multiplication
• Tensor addition
• Slicing
• Reshape/transpose/split/concat
• Array programming
• Data/mask generator

What do we need?

• We explored these state-of-the-art models:

14

Transformers GNNs

Not in SAM
Supported in SAM extended

Reuse and Traffic with Tiling for
Sparse Accelerators

Ritvik Sharma, Olivia Hsu, Max Strange, Rubens
Lacouture, Fred Kjolstad, Mark Horowitz

Reuse and Traffic with Tiling for Sparse Accelerators

A sparse accelerator’s traffic vs it’s optimal memory traffic (red dots)

Odemuyiwa et al, Dynamic Reflexive Tiling: ASPLOS 2023

Reuse and Traffic with Tiling for Sparse Accelerators

Different Tiling Strategies

Static Coord Space Static Position Space Dynamic Coord Space

Reuse and Traffic with Tiling for Sparse Accelerators

• Extending our sparse framework to support different tiling strategies
• Optimize tiling for improved memory reuse & traffic based on collected

statistics for suitesparse matrices

Suitesparse matrices data distributionSAM primitives and graphs for Tiling

Sparse Shape Operators

Alexander J. Root, Bobby Yan, Peiming Liu, Aart Bik, Fredrik Kjolstad

Array programming is ubiquitous

Sparse arrays are used across many domains

Array shapes are often manipulated

Shape operators

Sparse shape operator support is sparse

● Limited data structure support

● Lacking fusion across function calls

Sparse shape operator support is sparse

Sparse
Formats

Reshape Concatenate Slice Fusion

scipy.sparse

Looplets

TACO

Burrito

Program Synthesis is a
Powerful Technique!

0| input x : BV[16]
1| input y : BV[16]
2| input z : BV[16]
3| r0 = ir.mul(y,z)
4| r1 = ir.add(x,r0)
5| return r1

Program
Synthesis

Program
Specification

Satisfiability Modulo Theory
(SMT) Solvers Enable

Efficient Program Synthesis

Using Program
Synthesis in AHA?

Generate

CGRA Executable

Specification
of IR

Specification
of PE

CGRA Executable

Application

Lower to
IR

Instruction
Selection

Scheduling +
Allocation

Assembly

Compiler
AHA Goal: Automatically
Generate CGRA Compiler

Program
Synthesis

CGRA Executable

Specification
of IR

Specification
of PE

CGRA Executable

Application

Lower to
IR

Instruction
Selection

Scheduling +
Allocation

Assembly

Compiler

Use Program Synthesis to
Generate Instruction

Selection Rewrite Rules!

Generalized
CBPS

ISA-Program
(size N)KerKerN ISA-

Instructions

KerKerM IR-
Instructions

IR-Program
(size M)

Brand New Program
Synthesis Technique!

Completeness Guaranteed!

Optimizations Provide
Massive Speedups!

10x
Speedup!

92x
Speedup!

Efficiently Synthesizing
Lowest Cost Rewrite Rules

for Instruction Selection
Ross Daly

Cascade: An Application Pipelining Toolkit for
Coarse-Grained Reconfigurable Arrays
Existing CGRA compilers do not produce high
performance and energy efficient applications

• They lack pipelining resulting in low
performance or exhaustively pipelining
resulting in high power

Cascade is an end-to-end compiler which has:

• An automatic CGRA timing model generator
• A static timing analysis tool for CGRA

applications
• A large set of existing and novel pipelining

techniques integrated into an end-to-end flow

PE

MEM PEPE

MEM PE

Critical Path

Improving the Performance of
Convolutional Neural Networks on CGRAs

Yuchen Mei

Dedicated PnR & Pipelining for CNN on CGRAs

Try to solve limitations

of CNN on CGRAs:
MEM PE

MEM

PE

PE PE

MEM PE PE

Low Utilization Poor Routability Long Critical Path

by:
Systolic Array Placement PnR-optimized Pipelining MEM Rescheduling

Finch:
A Placement and Routing Visualization
and Editing Tool for Coarse-Grained
Reconfigurable Arrays
Zhouhua Xie, Kalhan Koul, Jackson Melchert, Priyanka Raina

AHA Retreat 2023 Lightning Talk

Current Challenge

2

Difficulty in Place & Route
(P&R) for CGRA physical
design:
• Inhomogeneous resource

distribution

• Limited resources on
placement and routing

• Complex design space

Imperfect P&R Algorithm
for CGRA

Problem Example:
Scattered Placement

Finch

3

DisplayPlacement Routing

4

Primary Use Cases

• Editing for Last Mile
Improvement

• Design Analysis
• Application Design

Prototyping
• P&R Algorithm Analysis

Incorporating Formal Translation Validation into
CGRA Compilers
• AHA tools have enabled agile hardware/software codesign
• Verification is still painful and a better solution exists:

Formal translation validation of our CGRA compiler

• Will enable faster, more extensive verification that decreases
debugging time and increases productivity

An Abstract Calculus for Optimization Modulo Theories
Nestan Tsiskaridze 1 Clark Barrett 1 Cesare Tinelli 2

1 Stanford University 2 The University of Iowa

Applications
Scheduling/Planning with Resources
Requirements Engineering/Specification Synthesis
System Design/Configuration
Formal Verification/Model Checking
Program Analysis Security Analysis
Machine Learning
Quantum Annealing
…

Satisfiability Modulo Theories (SMT)
Powerful Search Engines
The Abstract DPLL(T) Calculus for SMT:

Superior

Efficiency
+

Expressiveness
+

Flexibility

Image Source: 1930 – Express Coffee Machine Set – A. Torriani – Patent (https://www.etsy.com/shop/InkedPatentPrints)

Optimization Modulo Theories (OMT)
An Abstract OMT Calculus:
A foundation for theoretical understanding
and research
A blueprint for practical implementations

Find me to Learn HOW!

Rapid Integration of Flow IP
with Agile Physical Design

Tools
Alex Carsello, Christopher Torng, Mark Horowitz

Agile PD Tools Struggle to Facilitate Reuse at Scale

● Agile PD Tools aim to reduce PD effort by providing reusable modular flows with
customization for design/tech

○ Mflowgen, Silicon Compiler, HAMMER

Small-Scale reuse:

● Small teams with established communication channels
● Limited scope/complexity
● Existing tools work well

Reuse at scale:

● Node produced by one team and used by another
● Little-to-no communication
● Different projects/complexity
● Effort required to use IP may exceed effort required to develop your own

Testing is the Answer

● Augment mflowgen Node primitive with tests

○ Tests can attach to any PD flow graph

● Test specify where in the flow they need to run

● Tests tell mflowgen where it can reduce effort or
skip steps entirely to get test results faster

● Tests can span multiple hierarchies/subgraphs

● Talk to me at my poster to learn more!

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

1 Hardware
experts with
~5-20+ years
of experience

CPU

TPU

Accelerators

... who are also

domain enthusiasts
with ~1 year or less
of experience

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

1 Hardware
experts with
~5-20+ years
of experience

CPU

TPU

Accelerators

Specification

TapeoutDevelopment Time

RTL Design
Verification

Physical Design and Impl

... who are also

domain enthusiasts
with ~1 year or less
of experience

A specific way that things have always been done

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

1 Hardware
experts with
~5-20+ years
of experience

CPU

TPU

Accelerators

Specification

TapeoutDevelopment Time

RTL Design
Verification

Physical Design and Impl

A specific design
methodology

Software Stack
Architecture

VLSI
Technology

... who are also

domain enthusiasts
with ~1 year or less
of experience

A specific way that things have always been done

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

2

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

2 Application domain
experts

with ~1 year or less
of experience with
hardware design

... whose primary jobs are

 Machine Learning
 Image Processing
 Video Coding
 Cryptography
 Wireless

Domain Experts

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

2 Application domain
experts

with ~1 year or less
of experience with
hardware design

... whose primary jobs are

 Machine Learning
 Image Processing
 Video Coding
 Cryptography
 Wireless

Specification

TapeoutDevelopment Time

RTL Design
Verification

Physical Design and Impl

Key Question: Do our existing methods work? Domain Experts

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

2 Application domain
experts

with ~1 year or less
of experience with
hardware design

... whose primary jobs are

 Machine Learning
 Image Processing
 Video Coding
 Cryptography
 Wireless

Specification

TapeoutDevelopment Time

RTL Design
Verification

Physical Design and Impl

Key Question: Do our existing methods work?
Software Stack

Architecture
VLSI

Technology

Does the stack
need to change
to "hide" more?

Domain Experts

USC Christopher Torng

Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

a very different world of hardware design

2 Application domain
experts

with ~1 year or less
of experience with
hardware design

... whose primary jobs are

 Machine Learning
 Image Processing
 Video Coding
 Cryptography
 Wireless

Domain Experts

Avanergy is a new abstraction that numerically
systematizes energy-aware design-space exploration
in a way that future automated tools can build upon it

Automatic Discovery of Late Stage Timing Bugs

Raj Setaluri, Christopher Torng

Automatically find timing bugs using formal tools

Complex chips have timing bugs

Amber

Timing constraints

GLS

STA

Timing bugs still exist!

Why do these bugs happen?

Timing bugs are needles in a haystack

ASPEN: Acceleration of Visual-Inertial Odometry for

Extended Reality on an FPGA

Kathleen Feng

30 August 2023

1

Extended Reality Pipeline

Perception
Pipeline

Hand/Eye
Tracking

Visual-Inertial
Odometry

Scene
Reconstruction

Visual Pipeline

Audio Pipeline

Camera, IMUs,
Depth Camera

Mic

Application
Rendering

Post-
Processing

Display

Recording Encoding Playback

2

CPU Performance Breakdown

Source: ILLIXR [Huzaifa 2021]

3

VIO: Visual Inertial Odometry

Calculates 3D user position from sensors

• IMUs, cameras) (x , y , z , ✓,�,)

• Most dominating subtask, represents ⇠ 40% of XR workload

Left

Forward

Roll

Yaw

Pitch

Up

Using OpenVINS as gold model [https://docs.openvins.com/index.html]

4

https://docs.openvins.com/index.html

A Fast Large-Integer Extended GCD
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

A Fast Large-Integer Extended GCD
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Target
Platform

Algorithm
Choice

Application
Requirements

XGCD Design Space

A Fast Large-Integer Extended GCD
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Target
Platform

Algorithm
Choice

Application
Requirements

XGCD Design Space

Onyx

Interrupt-driven MLSD-based Links

1

Channel!! !!Nonlinear
Equalization

Linear
Equalization

Channel!! Error
Checker

Linear
EQ !!

Error Corrector

FIFO

Fo
rk

-o
n-

Fla
g

Co
m

bi
ne

Zach Myers, Stanford VLSI Group

Co-Designing AI Models and Embedded
DRAMs for Efficient On-Device ML Training

Thierry Tambe

Weights are transient, Activations are transient, Gradients are transient

Data transience is pervasive

2

Computational
graph of DL training

eDRAM as main on-chip storage medium

3

+ Denser than SRAM

+ Lower access energy than SRAM

+ Can be made multi-level

- Activations must be buffered for duration of fwd and bwd passes

- Retention time in order of a few microseconds

Algorithm-System Co-Design for eDRAM-based
Computing

Algorithms
HW

Architecture

eDRAM
Architecture

4

On-Chip ML Training
with Refresh-Free

eDRAMs

Reversible neural networks to avoid buffering
activations

5

Equations during the
training process

Operations during
backward pass

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Activations x1 and x2 are
recomputed instead of
being loaded from mem

Input

Output

Softmax

Reversible
Block

Reversible
Block

po
ol

in
g

po
ol

in
g

x2

y

+

x1

+

F2

F1

Concatenate

+

x

y
Pretrained
DNN Block

Pretrained
DNN Block

B
ackbone D

N
N

Trainable
Branch DNN

pooling

F3

Duplex DNN (DuDNN) with reversible branch that obviates
buffering activations in memory for BWD pass

Reversible
Block

Step 1: Recompute
the input x using y

y

x

Reversible
Block

Step 2: Compute gradients
and update weights

gout

w=F(gout, x)

Interleaved memory access patterns to promote
implicit refresh

x1/y1 x2/y2 g1 g2
6

x1/y1

x2/y2 g1 g2

ASIC co-design to minimize data lifetime

7

Thank you!

8

