Using a CGRA with
Dynamic Partial Reconfiguration

Taeyoung Kong

Kalhan Koul, Priyanka Raina, Mark Horowitz, and Christopher Torng

Stanford University

Stanford University



Motivation - Multi-Task Workloads

E—
? |{UOOC
—> | L
Dynamic Concurrent
10m§" HERE
100ms I
Pipelined Latency-Critical

=> Exploit Dynamic Partial Reconfiguration of CGRA to adapt to such workloads

Stanford University



Architecture - Fast DPR & Flexible Resource Allocation

.
L L L L]

HiE .
.

> TIME

Fast DPR allows a rapid change of underlying kernel

Flexible resource allocation of MEM units and PE units increases
resource utilization

Stanford University 3



Compiler - Various Kernel Variants

Kernel - Gaussian Blur
Ver.1l Schedule Ver.2 Schedule
Unroll: 1 Unroll: 2
IS Tiling: 64x64 i Tiling: 64x64
[T T TR T Buffering: Ioop_y :_ _} :_ _: Buffering: Ioop_x
"B B Im Parallelization: 4 "B R B Parallelization: 3
HENE Order: w->h->c EEEE Order: w->h->c
. B N N HE NN
B BB BB [ ]| |Resource: #PE, #GLB Bl B B B | |Resource: #PE, #GLB
Runtime: 8ms Runtime: 5ms

Compiler prepares several versions of the single kernel (Variants)
- different hardware resources
- different runtime

Stanford University



Runtime - Resource-Aware Scheduler

TASK-A I Kernel al | - | Kernel a2 | - [ Kernel a3 | Requirement: 100ms
TASK-B | Kernel bl | — | Kernel b2 | — | Kernel b3 | — I Kernel b4 Requirement: 20ms
Kernel a2 . Kernel b3
compute intensive Space - Time Schedule memory intensive

*"’"’A\\\ | —
el
Ver.1 \I I l l | l l I Ver.1
) | e N =
= =
0 ][]|: BT
! — | | 1
- ||/ N . L--
---I:lK | — (N B | )] .
erne _ - K |
NN R i — (W . .. CJCIC] . Jome
| N N R miC A 8§ I i L] C ]
N[ T T T T 7T CI1C] 0] .
ime: 10ms Runtime: 3ms
L et ,zom Flexible Hardware [ tustioerdns
[ MNHMES 30 Resource Partitioning [ Runtme=om

Scheduler selects one of the kernel variants at runtime based on
- remaining runtime requirements
- resource availability

Stanford University



Simulator - Python-Based Performance Simulator

'J:
Ll
Ver.l ] _
D D |:| D Kernel a ] %SS C
- - - ] .
Lane Detection Runtime: 2ms 3 D D D -
[& Array slice: 3 YT
LU | —
—_ Object Detection Glb:shice:.3 CGRA Description
L idthe L
Detgggon Kernel Graph Bandwidth: 10 || J’
Kernel
o Variants S . | t Latency
r hl ‘} oy .
§§ @ In Iu a Or Utilization
L0 a3 T
Object Object Req: Dist.:
Detejction Detection 100ms  Poisson
— LU0
Lane Req:  pist.:
Tasks Detection 20ms  Streaming

Task Generator D_)D

Scheduler

Performance simulator allows easy exploration of CGRA and scheduler

Stanford University



Result - Image Processing + ML Workload

convl -3 conv2 1=—pconv2?2 o @ @ conv5 4 —>» FC ’

ResNet-18
C greyscale ) edge
Lane detection 275 — +HLS |=) [gaussian detection
| + lane masking’ blur + Rol crop

W Baseline M Siot + Spa Flex + Spat M Slot+RAS W Flex + RAS . . .
ki ik i Lane detection + Object detection

20

15

1.6x speedup with

- DPR & flexible resource allocation
- resource-aware scheduler

1.0

05

Normalized Speed-up

0.0
ResNet-18 Lane Detection

Stanford University



Thank You

Stanford University



Scorch
A library for sparse machine learning

Bobby Yan* Alexander J. Root* Trevor Gale*T, Fredrik Kjolstad*
*Stanford University, TGoogle Research

AHA Retreat 2023 Lightning Talk | August 30, 2023



Sparsity comes from data and model design

» Expert 1

—>| Expert 2

[ Router ]— _1[ —[Accumulator]

—| Expert k

y
» LI ||
e 2

> Expertn

Mixture of experts

Stanford | Computer Science

4 E—

= E

U h WO N — O

01 2 3 4 5 6 7

Graph neural networks

Sparse transformers

EEEE
EEm
,.w

Recommender systems



Programming model landscape is fragmented

. AV DEEP
O 1F “A‘Q‘A:A:“‘z‘:‘ ,"?}‘ "LjG LIERARY

torch.sparse  tf.sparse  jax.sparse PyG DGL
Htvm -
LV > CUSPARSE
TVM MLIR Sparse cuSPARSE MKL-DNN

Stanford | Computer Science



Programming model landscape can be unified

&

Scorch

Stanford | Computer Science



Compiling Declarative
Recurrences To Imperative
COde Shiv Sundram, Muhammad Usman Tariq,

Fred Kjolstad
August 2023

Stanford University



Three classes of algorithms

Linear Solvers
(LU, Cholesky)

1

2

3

Stanford University



Three classes of algorithms

Linear Solvers
(LU, Cholesky)

> Dynamic Programs
(Sequence Alignment, Bellman)

3

Stanford University



Three classes of algorithms

Linear Solvers
(LU, Cholesky)

> Dynamic Programs
(Sequence Alignment, Bellman)

3 Graph Algorithms
(Floyd-Warshall, Viterbi)

Stanford University



All expressible in a common language

Recurrence Equations

Lij = (Aij — izo LixLj)/ Ly

1< 1

Li; = \/ Aij = 3o Lk Lk

P ] =1

Stanford University



All expressible in a common language

Recurrence Equations

Lij = (Aij — Y 3—o LirLjx) / Ly;

<

Lij =\ Aij — iy LiLsk

1 ]=1

Stanford University



All expressible in a common language

Recurrence Equations

Lij = (Aij — Y 3—o LirLjx) / Ly;

<

Lij = \/ Aij — 3ho LinLj

1 ]=1

Schedule

loop ordering
parallelization

Storage

Dense (row/column major)
Sparse (CSR)
Sparse (CSC)

Stanford University



All expressible in a common language

Recurrence Equations

Lij = (Aij — Y 3—o LirLjx) / Ly;

1j<i Dependency Lower to IR .| Lower to
\ Analysis d Recurrence Index Notation C
Lij = \/ Aij — 3ho LinLj
for i<N:

P=i for j<i:
for_all k<j:

Schedule L1+ = L;;Ly
Lij = (Aij — L1ij) / Lj;

loop ordering L1;+ = L;;L;;
parallelization L. — \/ﬁ

[ i (12

Storage

Dense (row/column major)
Sparse (CSR)
Sparse (CSC)

Stanford University 8



DSL for Recurrences

+Emit parallel C code
+Sparsity

+Loop ordering
(nontrivial for recurrences)

+Loop-fusion

Stanford University



DSL for Recurrences

+Emit parallel C code * Viterbi Equation (info. theory)
+Sparsity * Floyd-Warshall (shortest paths)

* Needleman-Wunsch (seq. alignment)
+Loop ordering

(nontrivial for recurrences) * Cholesky Decomposition (direct solver)

. * Gauss-Seidel (iterative solver)
+Loop-fusion

* Tensor Algebra (tensor algebra)

Performance improvements or parity
with existing libraries

Stanford University 10



Compiling Sparse Machine Learning to
Streaming Dataflow

Rubens Lacouture, Olivia Hsu, Nathan Zhang, Ritvik

STANFORD

Sharma, Kunle Olukotun, Fred Kjolstad



Expressing ML Applications in SAM

* Priorwork, Sparse Abstract Machine (SAM), is not enough to

express sparse ML

We explored these state-of-the-art models:

Transformers

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

« 3-Tensor multiplication

* 4-Tensor multiplication

« Tensor addition

. Slicing X

» Reshape/transpose/split/concat [X]
 Array programming (X
 Data/mask generator [X]

o SpMM Supported in SAM

« SDDMM () Notin SAM
« SpMV[Y]
« Slicing (X

« Reshape/transpose (X
« Data/mask generator(X]



Expressing ML Applications in SAM

* Augment SAM to support the large space of sparse ML
* New hardware primitives
* DL framework, new compiler optimizations
* Faster concurrent simulation platform

* Leverage its tensor algebra compilation capabilities

dimension | dimension j

Filter
f(i,j) =1 > ]
Triangular lower

dimension i
dimension i

321 val Unary ALU val exp(3).exp(2).exp(1)

f(x)=exp(x)
Exp



Expressing ML Applications in SAM

So now It can

PyTorch

TorchScript
Parse

We explored these state-of-the-art models:

Transformers

PyTorch IR

» 3-Tensor multiplication * SpMM Supported in SAM extended

 4-Tensor multiplication~] + SDDMM Not in SAM

« Tensor addition « SpMV[ DL Compiler

+ Slicing + Slicing

» Reshape/transpose/split/concat * Reshape/transpose ¢

* Array programming » Data/mask generator

» Data/mask generator SAM
Extended




Reuse and Traffic with Tiling for
Sparse Accelerators

Ritvik Sharma, Olivia Hsu, Max Strange, Rubens
Lacouture, Fred Kjolstad, Mark Horowitz

Stanford University



Reuse and Traffic with Tiling for Sparse Accelerators

o 20 . ATraffic 29.6

Q15 B Traffic

o = Z Traffic

£ 10

=

-

Q )—t——o oo [ -

OuterSPACE MatRaptor ExTensor

A sparse accelerator’s traffic vs it’s optimal memory traffic (red dots)

Odemuyiwa et al, Dynamic Reflexive Tiling: ASPLOS 2023
Stanford University



Reuse and Traffic with Tiling for Sparse Accelerators

Static Coord Space Static Position Space Dynamic Coord Space

Different Tiling Strategies

Stanford University



Reuse and Traffic with Tiling for Sparse Accelerators

e Extending our sparse framework to support different tiling strategies

* Optimize tiling for improved memory reuse & traffic based on collected

statistics for suitesparse matrices

Rd Scanner
(Ay)
Ccrd k Data Distribution inside a 128*128 tile for Suitesparse Matrices
Crdi > Crd iouter 3 Split
Ref i Split and Reorder Crd finner
é ﬁ i stream
A
Ref k
% Split And Reorder
over - L 1] Lssst
--s8) LIEYIEFAEEY )
keef | T S T T T T T e e I e
o outer _-:Z-:Z-:Z-:Z-:Z-:Z-:Z-:Z-:I—:-:-—:-—:-:Z-:Z-:-:Z-:I-:-:-:-:-:-:Z-:-:-:-:-:- :::
1k crd (Array Vals (B . . . ) <§.—<§~ SFTRV O TR P PR O D R
Wr Scanner Wr Scanner Wr Scanner B
Bi Bk vals

SAM primitives and graphs for Tiling

Stanford University

Suitesparse matrices data distribution



Sparse Shape Operators

Alexander J. Root, Bobby Yan, Peiming Liu, Aart Bik, Fredrik Kjolstad



Array programming is ubiquitous




Sparse arrays are used across many domains

N U R W N = O

.

01234567




Array shapes are often manipulated

x[0] —» x[0] —> = [ y[0] :
X[1] x[2] — | N/2-point | — E[1] y[1]
x[2] x4 — | FFT | — E[2] yl2]
x[3] x[6] — — E[3] y[3]
x[4] x[1] — — 0[0] yl4]
X[5] X[8] — | N/2-point | — ©l1] y[5]
X[6] x[5] — FFT — O[2] y[6]
X[7] — X[7] —> — 0[3] yl7]
X 0 0




Shape operators

|
—_ | reshape[16); l [ | l | | | | ‘77‘ ﬁ—l—]—‘
LI T[]
L,-,i
(] reshape(4, 2, 2) Li I J
LI T[]
concat(1)
‘ [ I | | | | | I slice(1:4:2) E]:[j:l




Sparse shape operator support is sparse

O PyTorch

¢

e Limited data structure support

e Lacking fusion across function calls




Sparse shape operator support is sparse

Sparse
Formats

Reshape

Concatenate

Slice

Fusion

scipy.sparse

Looplets

X

TACO

X
X

X

Burrito




Program Synthesis is a
Powerful Technique!

Program
Specification

Program

Synthesis

O]
1]
2|
31
4]
S|

input x : BV[1l6]
input y : BV[16]
input z : BV[16]
rO = ir.mul (y, z)
rl = ir.add(x,r0)
return rl




Satisfiability Modulo Theory
(SMT) Solvers Enable
Efficient Program Synthesis



Using Program
Synthesis in AHA?



Application

AHA Goal: Automatically ... -
Generate CGRA Compiler | Lo

5
|

Specification Instruction
of PE : Selection
Generate —— l
y \
Specification Scheduling +
of IR Allocation
: \_ y

l
[ Assembly j

* .
0. “
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

CGRA EXecutable



Use Program Synthesis to Application

Generate Instruction ::: --------------------- E;Hrr.‘.;.i.l.;;“‘:
Selection Rewrite Rules! [ Lower to J
IR
Specification Instructionj
of PE Selection
Program
Synthesis l
r )
Specification : Scheduling +
of IR Allocation
P\ y

l
[ Assembly j

* .
0. “
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

CGRA EXecutable



Brand New Program
Synthesis Technique!

M IR_— IR-Program
H Instructions (size M)
Generalized
| CBPS
| ISA-Program
N ISA- (size N)

| | Instructions

Completeness Guaranteed!



Cumulative SAT Time (min)

Cummulative SAT Time (min)

Optimizations Provide
Massive Speedups!

50 (Dup + Comp)
— Same-Kind Narrowing
40 Commutative Narrowing
Dup Exclusion 1 x
30 — (Dup + Comp) Exclusion
— All Optimizations
. Speedup!
. =, p up!
0
0 200 400 600 800
Number of Unique Rules
1000 )
— All Unique
100 — IR Dup Exclusion
10 IR Dup + Comp Exclusion x
1
Speedup!
. peedup!
0.001
100p
10p
0 50 100 150 200 250

Number of Lowest Cost Rules



Efficiently Synthesizing
Lowest Cost Rewrite Rules

for Instruction Selection
Ross Daly



Cascade: An Application Pipelining Toolkit for
Coarse-Grained Reconfigurable Arrays

Existing CGRA compilers do not produce high
performance and energy efficient applications

* They lack pipelining resulting in low
performance or exhaustively pipelining
resulting in high power

Cascade is an end-to-end compiler which has:

* An automatic CGRA timing model generator

A static timing analysis tool for CGRA
applications

* A large set of existing and novel pipelining
techniques integrated into an end-to-end flow

Stanford University

-l

2

PE

2

PE

2

PE [

PE

2

llllll

llllll

llllll

Critical Path




Improving the Performance of
Convolutional Neural Networks on CGRAs

Yuchen Mei

Stanford University



Dedicated PnR & Pipelining for CNN on CGRAs

Try to solve limitations
of CNN on CGRAs:

by:

Systolic Array Placement

Low Utilization Poor Routability

OROOe000 (= = =)
1
S=0-0-0
||||.||||.||||!%

LOO000Od

PnR-optimized Pipelining

s &
R e

Stanford University

Long Critical Path

MEM Rescheduling

Delay Table

MEM
Bank 012345

Delay 111111

MEM
Barl 012345

Delay 123456

"\

1 Ay

Clockwork
Compiler

4

-

Rescheduled
Configuration




Finch:

A Placement and Routing Visualization
and Editing Tool for Coarse-Grained
Reconfigurable Arrays

Zhouhua Xie, Kalhan Koul, Jackson Melchert, Priyanka Raina

AHA Retreat 2023 Lightning Talk

Stanford University



Current Challenge

Difficulty in Place & Route
(P&R) for CGRA physical
design:

« Inhomogeneous resource
distribution

« Limited resources on
placement and routing

« Complex design space

Imperfect P&R Algorithm

Problem Example:
fOI’ CGRA Scattered Placement

Stanford University



Finch

Edit:
R
Current Width: 17

tile: 28.0 15.0

REG: r1158

width 17: e40 e39

SB ports:

€1166 side 0 track 2 in
€39 side 0 track 4 out
€1166 side 1 track 1 out
e39 side 3 track 3 in

Reg Edit
Edit Set
Reload Switch
Save Load

444l

A4 400!

-—Edit-—-
Segment 140:
Net _id: e1162 17

Free
Start: r940 T1_NORTH 27 15

SB: loc 27 14 side 1 track 1 in

SB: loc 27 14 side 0 track 2 out

SB: loc 28 14 side 2 track 2 in

SB: loc 28 14 side 0 track 2 out

SB: loc 29 14 side 2 track 2 in

SB: loc 29 14 side 1 track 1 out

SB: loc 29 15 side 3 track 1 in

End: p545 29 15

Free Nets:
segment 140 in net e1162 17
segment 198 in net e1264 17

140
Pick Seg Remove Last
Quit Set Seg

Stanford University




Primary Use Cases

ittt

L

Wil

ittt

it
B

®  Editing for Last Mile i B
Improvement ) )
®  Design Analysis W E
® Application Design (I
° IL!ILIILI ILI
Prototyping &
¢ P&R Algorithm AnalySiS ILIILIIIlCIIIIEI T
lLi iL !LI iEi —
ILI ILI'I'L__IlllL,,,I
!{_i IJ__I IJ__! 'F{TI
ILI ILI IiL‘ I L I

‘L,' 'L'I'L,'l |l__.|\__

Stanford University



Incorporating Formal Translation Validation into

CGRA Compilers

e AHA tools have enabled agile hardware/software codesign

* Verification is still painful and a better solution exists:

Formal translation validation of our CGRA compiler

Halide Sch'edulmg W'Ith CorelR Dataflow Place & Pipelined Bitstraam CGRA
Abbileation ~ Halide Compiler — Dataflow [~ Mapper [~ Graphof —{ Routewith —~{ Graphof [~ Geneiator - A
PP + Clockwork Graph PEs/MEMs Pipelining PE/MEM
N -7 ~~J Equivalent? |-~ ~~ L Equivalent? |-~

debugging time and increases productivity

Stanford University

Will enable faster, more extensive verification that decreases




—~ 7000 /

% 6000 —— Kissat ; /,I
. £5000 - Kissat + SDSL =7
We present Self-Driven 5 4000 .
Strategy Learning, an g 50
. o e
online learning method 3 1000 :
= 5 10 15 20 25 30 35 40
for automated reasoning Seived Bound
tasks that |nVO Ive SO |V| ng Executions of Bounded Model Checking with and without SDSL

a set of related problem

SDSL invests time learning a good solving strategy in
the beginning, which results in better performance
when solving later problems.

Lightweight Online Learning for Sets of Related Problems in
Automated Reasoning

Haoze (Andrew) Wu Christopher Hahn Florian Lonsing  Makai Mann Raghuram Ramanujan  Clark Barrett
Stanford Univ. Stanford Univ. Unaffiliated ~ MIT Lincoln Lab ~ Davidson College Stanford Univ.



S Stanford An Abstract Calculus for Optimization Modulo Theories

Nestan Tsiskaridze*! Clark Barrett! Cesare Tinelli?
1 Stanford University 2The University of lowa
Applications Satisfiability Modulo Theories (SMT)
Scheduling/Planning with Resources Powerful Search Engines
Requirements Engineering/Specification Synthesis The Abstract DPLL(T) Calculus for SMT:

System Design/Configuration

Formal Verification/Model Checking /
Program Analysis  Security Analysis

Machine Learning
Quantum Annealing

\ Superior
Efficiency —_—
+

Expressiveness
+

Flexibility

Optimization Modulo Theories (OMT)
An Abstract OMT Calculus:

Find me to Learn HOW! . " : A foundation for theoretical understanding
I\ §G———3 and research

A blueprint for practical implementations

L

i
& N n/uz UQ{&EQ@Y

Image Source: 1930 - Express Coffee Machine Set - A. Torriani - Patent (https://www.etsy.com/shop/InkedPatentPrints) Stanford | center for Automated Rea OF lOWA



Rapid Integration of Flow IP
with Agile Physical Design
Tools

Alex Carsello, Christopher Torng, Mark Horowitz



Agile PD Tools Struggle to Facilitate Reuse at Scale

e Agile PD Tools aim to reduce PD effort by providing reusable modular flows with

customization for design/tech
o  Mflowgen, Silicon Compiler, HAMMER

Small-Scale reuse: Reusable Node Library

e Small teams with established communication channels .“‘

e Limited scope/complexity
e Existing tools work well

Reuse at scale:

Node produced by one team and used by another

Little-to-no communication

Different projects/complexity

Effort required to use IP may exceed effort required to develop your own



test: <pointer to test graph>

Testing is the Answer

attach _points: PLACE, CTS,

ROUTE

e Augment mflowgen Node primitive with tests express_mode: skip opt

o Tests can attach to any PD flow graph @

e Test specify where in the flow they need to run

custom-power-hierarchical

e Tests tell mflowgen where it can reduce effort or
skip steps entirely to get test results faster

\globalnetconnect.tcl [ power-strategy-dualmesh.tcl |

e Tests can span multiple hierarchies/subgraphs

e Talk to me at my poster to learn more!




Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware Design-Space Exploration Tools

USC Christopher Torng




Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware-Design-SpaceExploration Tools

a very different world of hardware design

USC Christopher Torng




Avanergy: An Architecture-VLSI Abstraction for

a very different world of hardware design

Hardware
experts with
~5-20+ years
of experience

Accelerators

Christopher Torng

... who are also

domain enthusiasts
with ~1 year or less ||

of experience




Avanergy: An Architecture-VLSI Abstraction for
A ' ' 0O0Ils

a very different world of hardware design

@ Hardware
/ experts with CPU
~5-20+ years
of experience TPU

... who are also

domain enthusiasts
with ~1 year or less ||
/ of experience

Accelerators

A specific way that things have always been done

Specification
RTL Design

Verification
Physical Design and Impl | Tapeout

Development Time

USC Christopher Torng




Avanergy: An Architecture-VLSI Abstraction for

A

a very different world of hardware design

@ Hardware
/ experts with CPU
~5-20+ years
of experience TPU

Accelerators

A specific way that things have always been done

Specification
RTL Design

Verification
Development Time Physical Design and Impl | Tapeout

USC Christopher Torng

... who are also

domain enthusiasts

/ with ~1 year or less |!!|

of experience

C
C
C
C

Software Stack ) 3 _
Al TeE e ) A specific design
methodology
VLSI )
Technology )




Avanergy: An Architecture-VLSI Abstraction for
Automated Energy-Aware-Design-SpaceExploration Tools

a very different world of hardware design

©

USC Christopher Torng




A

Avanergy: An Architecture-VLSI Abstraction for

a very different world of hardware design

©

Application domain
experts

with ~1 year or less
of experience with
hardware design

USC

/ ... wWhose primary jobs are

Machine Learning

.l Image Processing

L,l Video Coding
Cryptography
Wireless

Domain Experts

Christopher Torng



A

Avanergy: An Architecture-VLSI Abstraction for

@

/

a very different world of hardware design

Application domain
experts

with ~1 year or less
of experience with

/ ... wWhose primary jobs are

Machine Learning

L] Vidoo Codng

Cryptograph
hardware design Wri)rlgles?s phy
Key Question: Do our existing methods work? Domain Experts
Specification
RTL Design
Verification
Development Time Physical Design and Impl Tapeout

USC

Christopher Torng



Avanergy: An Architecture-VLSI Abstraction for

A

@

Key Question: Do our existing methods work?

/

Specification

a very different world of hardware design

Application domain
experts

with ~1 year or less
of experience with
hardware design

RTL Design

Development Time

L[]

Verification

USC

Physical Design and Impl

Tapeout

Christopher Torng

/ ... wWhose primary jobs are

Machine Learning
Image Processing
Video Coding
Cryptography
Wireless

Domain Experts

( Software Stack )

C Architecture ) Does the stack
need to change

¢ VES| ) to "hide" more?

( Technology )




Avanergy: An Architecture-VLSI Abstraction for

A

a very different world of hardware design

©

Application domain
experts

with ~1 year or less
of experience with
hardware design

/ ... wWhose primary jobs are

Machine Learning

.- Image Processing

|_. ,_I Video Coding
Cryptography
Wireless

Domain Experts

Avanergy is a new abstraction that numerically
systematizes energy-aware design-space exploration
in a way that future automated tools can build upon it

USC

Christopher Torng



Automatic Discovery of Late Stage Timing Bugs

Raj Setaluri, Christopher Torng

Complex chips have timing bugs

\ Timing constraints /

Timing bugs still exist!

Why do these bugs happen?

EQ_"L{—\;EIQI cx JULUTTITN

Qo ||
setup
CK}_—DJ Q1

Static timing . , Gate-level
analysis simulation x

Timing bugs are needles in a haystack

-
cel Subsyst
‘ Application Processor ‘ ( ELic ern’tor ubsystem ﬂ;:s
- ('iquarBuffer (GLB)
Processor Subsystem ok ik PPte
32-bit ARMM3 CPU | = § Sy
] [ Data/Configun‘aiion Network ]
32KBD$ || 32 KB I$ 8 ][_ltl_] L ] [ CGRA
[
g ® i {
| Peripheral Subsystem }4—' s PE
- <7 Tiles
DMA Engines ¢ 5 I (
ﬁ <'|- - o [ - MEM
n © : : 1
= : . Tiles
e 32 KB SRAM == EEEDEEE0 ooDoDoaC

Automatically find timing bugs using formal tools

Complex SoC Designs Timing-Sensitive Interfaces Small, Automated, and Targeted

] Gate-Level Simulations
Accel set_multicycle path 3 o

Proc (& E -from .. -to .. -setup Violation
e _ - i
51 set_multicycle path &

. 2 § -from .. -to ../~hold ) > J/ Pl | |

‘-; 5 MENES t_fal th A=

= & 5 se_; & 6P f gen Localized Timing Checks

= < - rom .. -to ..

55 [ S ]l:l Back-Annotated Setup-Hold

~ A :|D Human error in constraints SDF Tests (few cycles

(static timing analysis is clean)  (per constraint) per sim)




ASPEN: Acceleration of Visual-Inertial Odometry for
Extended Reality on an FPGA
Kathleen Feng
Stanford University

30 August 2023



Extended Reality Pipeline

Camera, IMUs,
Depth Camera

—

S
Perception
Pipeline

Hand/Eye
Tracking

Visu ertial
Odometry

Scene
Reconstruction
N—

Visual Pipeline

Application Post- ' .
Rendering Processing Display
Audio Pipeline
Recording ’—> Encoding —> Playback

NN 4



CPU Performance Breakdown

100%
80% 1
60% A
40% 1
20% 1

0% -

S M PAR S MPAR S M PAR
Desktop Jetson HP Jetson LP

Source: ILLIXR [Huzaifa 2021]

Encoding
Playback
Reprojection
Application
Integrator
IMU

VIO

Camera



VIO: Visual Inertial Odometry

Calculates 3D user position from sensors
¢ IMUs, cameras = (x,y,z,0,¢,1)
® Most dominating subtask, represents ~ 40% of XR workload

Up

Roll

- Left

Pitch Forward

Using OpenVINS as gold model [https://docs.openvins.com/index.html]


https://docs.openvins.com/index.html

A Fast Large-Integer Extended GCD
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng




A Fast Large-Integer Extended GCD
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Target
Platform

XGCD Design Space

N

Algorithm Application
Choice Requirements



A Fast Large-Integer Extended GCD
Algorithm and Hardware Design

Kavya Sreedhar, Mark Horowitz, Christopher Torng

Target
Platform

XGCD Design Space

N

Algorithm Application
Choice Requirements




Interrupt-driven MLSD-based Links

Zach Myers, Stanford VLSI Group

Linear I Nonlinear I
Si _>( Channel ()_’ Equalization | F | Equalization Si

—>  FIFO >

Combine

Fork-on-Flag

Linear Error
’(Channel 0_' EQ —> | i Checker —

Error Corrector




Co-Designing Al Models and Embedded
DRAMs for Efficient On-Device ML Training

Thierry Tambe

% Stanford

University



Data transience is pervasive

Backward Pass in [-th layer 1
(W)

o @

N RN A N s GEMM mmd Q- ettt

Computational
graph of DL training

Weights are transient, Activations are transient, Gradients are transient



eDRAM as main on-chip storage medium

+ Denser than SRAM

+ Lower access energy than SRAM

+ Can be made multi-level

- Activations must be buffered for duration of fwd and bwd passes

- Retention time in order of a few microseconds



Algorithm-System Co-Design for eDRAM-based

Computing

| HW
Algorithms Architecture

On-Chip ML Training
with Refresh-Free
eDRAMs

eDRAM
Architecture



Original DNN

A £
[&
F

X

Convert

ﬂ

Reversible DNN

Y1 A

y2 A

Output
A

—Q

F2

F1

!
/
1 /
/
/
/
!
1
/
/

Linear

L

Reversible
Block

)
A

Reversible
Block

X1

X2

Input

Reversible neural networks to avoid buffering
activations

Equations during the
training process

Forward pass:
y2 = F1(x1) + x2
y1 = F2(y2) + x1

Backward Pass:

X1 =y1 - F2(y2)

X2 = y2 - F1(x1)
Activations x4 and x, are

recomputed instead of
being loaded from mem




Interleaved memory access patterns to promote
implicit refresh

X2/y2 91 Jdo
X1/Y1\\ 1 /
wWL0 —8000 0000 . eo0oeo 0000 ., 0000 0O00B—WL128
wLl1 —8000 @000 @000 o0o0e 0008 0008——WwWL129
WiL126——@000 @000 . @000 0008 . 0008 Ooooe—WL254
WL127—8000 @000 0000 o00e 0008 0008 —WL255
BLO BL127 BL128 BL255

Slice L SliceR

@y @OxY. @ 9 92




ASIC co-design to minimize data lifetime

il Il BN ENN NN DN DN D S N N D N N D D D B B Sy,

4 ,’f \
- I Memory Input Setup / Output Retrieval |
Subsystem
! | ! :
I \ || & L[
3 HEIEN
l o »|  Reconfigurable [—{3||g||z i
S 1 | () +| 2 6x6 Systolic Array EllZ||S
ML Training § gpram 1| 2 E 8l[=[[=[
5 - Z 51 | 2
- Accelerator § 1|28 = - (] ]
E 1|2 8 UL
0 1]]|%2 E S
N 4 o | Accumulator | |
I B = - : , Accelerator
®© I Special Function Unit | I
I I S B V4 Core
~ I —1 BFP Convertor |
S ]
---------------------'

HYPER

:
ARM M55 (e | RaM

PHY

a-.".':'-fi:‘é'.'}'-'_-iéé.':'.'.‘-!:“.‘.



Thank youl!



