
Cascade: An Application Pipelining
Toolkit for Coarse-Grained
Reconfigurable Arrays

Jackson Melchert, Yuchen Mei, Kalhan Koul,
Qiaoyi Liu, Mark Horowitz, Priyanka Raina

Motivation
• CGRA have large performance and energy efficiency benefits over

FPGAs
• To achieve commercial viability, CGRAs must demonstrate

performance and EDP that approaches ASICs

• Current CGRA compilers either do not pipeline resulting in low
performance or pipeline exhaustively resulting in high power
• They cannot pipeline applications effectively, we need a new

compiler with a focus on pipelining

Background - CGRA Architecture
• Several classes of CGRA interconnects exist:
1. Exhaustively pipelined interconnects

• Expensive

2. Non-pipelined interconnects
• Cannot run at high frequencies

3. Interconnects with configurable registers
• Need pipelining techniques to run

fast

PE

PEPE

PE

Our Approach
• We adapt FPGA and ASIC-like pipelining and register retiming

techniques to CGRAs, and propose a technique for absorbing
registers into memory tiles

• We propose a post-PnR pipelining technique that iteratively
identifies the critical path in an application, breaks it, and performs
rescheduling while avoiding cyclic rescheduling and PnR

• An end-to-end CGRA compiler, called Cascade, which has an
automatic CGRA timing model generator, a static timing analysis
tool for CGRA applications, and a large set of existing and our
proposed pipelining techniques

Post Place and Route Pipelining
• After place and route, we know

locations of tiles and nets

• Iteratively identity the critical path,
break it, reschedule the application,
and repeat

• We can only add registers to existing
routes, so eventually we run out of
pipelining opportunities

PE

PEPE

PE

Post Place and Route Pipelining Example

PE

PEPE

PE
PE PE

PE

CB

SB

SB

SB

CB

Post Place and Route Pipelining Example

PE

PEPE

PE
PE PE

PE

CB

SB

SB

SB

CB

Critical
Path
Break

Post Place and Route Pipelining Example

PE

PEPE

PE
PE PE

PE

CB

SB

SB

SB

CB

Critical
Path
Break

Rescheduling CGRA Applications
Statically scheduled applications need to be updated after inserting
registers

1. Statically schedule the application without registers
2. Place and route the application
3. Pipeline
4. Analyze the application and compute new latencies
5. Reschedule the application before bitstream generation

Avoids cyclic rescheduling and pipelining

Optimizing Register Resource Usage
• Registers that are not on the

critical path can be removed
to save energy
• Static schedules of

memory tiles can be
adjusted to absorb the
delays

MEM
Starting

cycle=100

Compute
Kernel

MEM
Starting

cycle=100

PE

PE

PE
Compute
Kernel

PE

PE

PE

MEM
Starting

cycle=101

MEM
Starting

cycle=102

Cascade

• End-to-end application compiler that achieves high performance
through many pipelining techniques

• Cascade includes:
• Automatic CGRA timing model generator
• Static timing analysis tool for CGRA applications
• A large set of existing and our proposed pipelining techniques

Bitstream
Generator

CGRA
BitstreamRescheduler Low Unrolling

Duplication

Dataflow
Graph

Application
Compute
Mapper

Hierarchical
Dataflow
Graph of
PEs and
MEMsScheduler

and MEM
Mapper

Compiler

Compute
Pipelining

PnR with
Optimized

Cost Function

Placement
and Routing

on CGRA

Broadcast
Pipelining

Post-PnR
Pipelining

Methodology for Generating Timing Model

Interconnect
Specification

Timing Queries
(report_timing)

Application
STA Tool

IN to PE: 240ps
PE to OUT: 200ps
…

PE to OUT

IN to PE PE Tile

All Timing
Paths

Worst-Case
Timing Model

Post P&R Netlist PE
Core

Static Timing Analysis Model

PE

MEM PEPE

MEM PE

Critical Path

Results - STA Model Evaluation
• STA model predicts the actual

clock period accurately
• Above 500 MHz, the average

error is 13%

• All clock period errors are
positive
• Our model is pessimistic, it

will provide a lower bound
for the clock frequency

Results - Software Pipelining Dense Applications

Results - Software Pipelining Dense Applications

-86% -94%

-98%
-99%

-96%

Results - Software Pipelining Sparse Applications

Results - Software Pipelining Sparse Applications

Conclusion
• Cascade is an open-source end-to-end CGRA compiler that achieves

high performance and low EDP

• We adapt prior work on pipelining to CGRAs, introduce novel
register absorption and post-PnR pipelining techniques, and put
them all together in a pipelining compiler

• 8-34x shorter critical paths and 7-190x lower EDP for dense apps
3-5.2x shorter critical paths and 2.5-5.2x lower EDP for sparse apps

