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Motivation
• CGRA have large performance and energy efficiency benefits over 

FPGAs
• To achieve commercial viability, CGRAs must demonstrate 

performance and EDP that approaches ASICs

• Current CGRA compilers either do not pipeline resulting in low 
performance or pipeline exhaustively resulting in high power
• They cannot pipeline applications effectively, we need a new 

compiler with a focus on pipelining



Background - CGRA Architecture
• Several classes of CGRA interconnects exist:
1. Exhaustively pipelined interconnects

• Expensive 

2. Non-pipelined interconnects
• Cannot run at high frequencies

3. Interconnects with configurable registers
• Need pipelining techniques to run 

fast
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Our Approach
• We adapt FPGA and ASIC-like pipelining and register retiming 

techniques to CGRAs, and propose a technique for absorbing 
registers into memory tiles

• We propose a post-PnR pipelining technique that iteratively 
identifies the critical path in an application, breaks it, and performs 
rescheduling while avoiding cyclic rescheduling and PnR

• An end-to-end CGRA compiler, called Cascade, which has an 
automatic CGRA timing model generator, a static timing analysis 
tool for CGRA applications, and a large set of existing and our 
proposed pipelining techniques



Post Place and Route Pipelining
• After place and route, we know 

locations of tiles and nets

• Iteratively identity the critical path, 
break it, reschedule the application, 
and repeat

• We can only add registers to existing 
routes, so eventually we run out of 
pipelining opportunities
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Post Place and Route Pipelining Example
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Post Place and Route Pipelining Example
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Post Place and Route Pipelining Example
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Rescheduling CGRA Applications
Statically scheduled applications need to be updated after inserting 
registers

1. Statically schedule the application without registers
2. Place and route the application
3. Pipeline
4. Analyze the application and compute new latencies
5. Reschedule the application before bitstream generation

Avoids cyclic rescheduling and pipelining



Optimizing Register Resource Usage
• Registers that are not on the 

critical path can be removed 
to save energy
• Static schedules of 

memory tiles can be 
adjusted to absorb the 
delays
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Cascade

• End-to-end application compiler that achieves high performance 
through many pipelining techniques

• Cascade includes:
• Automatic CGRA timing model generator
• Static timing analysis tool for CGRA applications
• A large set of existing and our proposed pipelining techniques
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Methodology for Generating Timing Model
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Static Timing Analysis Model
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Results - STA Model Evaluation
• STA model predicts the actual 

clock period accurately
• Above 500 MHz, the average 

error is 13%

• All clock period errors are 
positive
• Our model is pessimistic, it 

will provide a lower bound 
for the clock frequency



Results - Software Pipelining Dense Applications



Results - Software Pipelining Dense Applications
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Results - Software Pipelining Sparse Applications



Results - Software Pipelining Sparse Applications



Conclusion
• Cascade is an open-source end-to-end CGRA compiler that achieves 

high performance and low EDP

• We adapt prior work on pipelining to CGRAs, introduce novel 
register absorption and post-PnR pipelining techniques, and put 
them all together in a pipelining compiler

• 8-34x shorter critical paths and 7-190x lower EDP for dense apps
3-5.2x shorter critical paths and 2.5-5.2x lower EDP for sparse apps


