Pushing the Limits of Scaling Laws in the Age of Generative Models

Azalia Mirhoseini Assistant Professor of Computer Science, Stanford

The Age of Generative AI!

Large Language Models (LLMs) and Generative Vision Models are disrupting how we live:

- Education •
- Software Engineering •
- Productivity •
- Law
- Finance
- Healthcare
- Art, and more

GPT4 writes an iOS app

Midjourney's AI generates images

The New York Times

T https://www.nytimes.com > 2023/03/08 > technology > c...

The Chatbots Are Here, and the Internet Industry Is in a Tizzy

F Forbes

Generative AI ChatGPT Still Winning Hearts And Minds Over

2

The Driving Force Behind Generative AI is Scaling!

Sevilla et al., "Compute Trends Across Three Eras of Machine Learning", 2022

Scaling Laws for Language Models

Performance of language models can almost precisely be predicted as a function of:

- Amount of compute used
- Dataset size
- Number of parameters in the model

Kaplan et al., Scaling Laws for Neural Language Models, 2020

Scaling Laws Goes Beyond Language Models¹

Henighan et al., Scaling Laws for Autoregressive Generative Modeling, 2020

The Significance of Scaling Laws

- Empirically "guaranteed" continual progress with scaling
- Emergent Behavior: Capabilities that only emerge in larger models
- Systematic compute allocation

Emergent Behavior: Zero/Few Shot Learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

1	Translate English to French:	← task description
2	cheese =>	←— prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Brown et al., GPT-3, 2020

Few Shot Learning Emerges in Larger Models

Brown et al., GPT-3, 2020

Emergent Behavior: Chain of Thought

Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021 Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022 (Figure is from this publication)

Chain of Thought Emerges in Large Models

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022

Emergent Behavior: Ability to Solve Entirely New Tasks

Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022

Scaling Laws Enable Systematic Compute Allocation

Capability prediction on 23 coding problems

- Mean Log Pass Rate

OpenAl 2023, GPT4

How Can We Push the Limits of Scaling?

This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

Traditional LLM Training and Finetuning

Training data is text (the internet, books, transcripts) and optionally human augmented prompts

Training objective is to predict the next word

https://huggingface.co/blog/rlhf

We Can Use Human Preferences to Finetune LLMs

- Data quality greatly impacts learning efficiency and scaling performance
- We can determine data quality through human ranking
- Humans are asked to rank the outputs of the model based on various criteria, for example:
 - Usefulness
 - Harmfulness
 - Truthfulness

Stiennon et al., 2020, Learning to summarize from human feedback

Reinforcement Learning from Human Feedback (RLHF)

We Can Use Reinforcement Learning to Bring Human Preferences to Training

Bai et al., 2022, Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback

RLHF Can Drastically Improve Scaling

1. Stiennon et al., 2020, Learning to summarize from human feedback

2. Bai et al., 2022, Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback

Constitutional AI: Self-Improving AI Using AI Feedback

In "Constitutional AI", the LLM follows a Constitution (set of principles written by a human) to generate feedback for self-improvement

Constitutional AI: Self-Improving AI Using AI Feedback

In "Constitutional AI", the LLM follows a Constitution (set of principles written by a human) to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and revisions

Constitutional AI: Self-Improving AI using AI Feedback

In "Constitutional AI", the LLM follows a Constitution (set of principles written by a human) to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and revisions

Example:

Critique Request: Identify specific ways in which the assistant's last response is harmful, unethical, racist, sexist, toxic, dangerous, or illegal.

Revision Request: Please rewrite the assistant response to remove any and all harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.

Constitutional AI: Self-Improving AI using AI Feedback

In "Constitutional AI", the LLM follows a Constitution (set of principles written by a human) to generate feedback for self-improvement

- 1. Supervised learning (SL): Finetune LLM on data generated by self-critique and revisions
- 1. Reinforcement learning from AI feedback (RLAIF):
 - a. Train a preference model based on LLM (from Step 1) responses and the constitution
 - b. Finetune the LLM to maximize the preference model

Constitutional AI: Self-Improving AI using AI Feedback

In "Constitutional AI", the LLM follows a Constitution (set of principles written by a human) to generate feedback for self-improvement

- 1. Supervised learning (SL): Finetune LLM on data generated by self-critique and revisions
- 1. Reinforcement learning from AI feedback (RLAIF):
 - a. Train a preference model based on LLM (from Step 1) responses and the constitution
 - b. Finetune the LLM to maximize the preference model

Example: Choose the response that answers the human in the most thoughtful, respectful and cordial manner.

Constitutional AI Improves Scaling over RLHF

In "Constitutional AI", the LLM follows a Constitution (set of principles written by a human) to generate feedback for self-improvement

26

Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback

This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

Can We Train More Efficient Models by Introducing Sparsity

- Traditionally, neural networks are dense:
 - Each input is processed by the entire model
- Mixture-of-Experts (MoE) is a dynamic model
 - Large weight matrices are replaced with a mixture of smaller weight matrices ("experts")
 - A gating function routes inputs to only a small number of experts

Noam Shazeer*, Azalia Mirhoseini*, Krzys Maziarz*, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean, Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, 2017

MoEs for Transformer based Language Models

Deep Mixture of Experts

- 2017: Introduced sparsely gated Mixture of Experts (MoEs), and trained the first 100B parameter language model
- 2019: MoEs shown to be effective for both language and vision tasks
- 2022: Used in GLaM: an MoE-based 1T+ parameter LLM by Google
 ~2x more efficient training and inference than GPT-3
- 2023: GPT4 is reportedly an MoE based model!

Noam Shazeer*, Azalia Mirhoseini*, Krzys Maziarz*, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean, Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, ICLR 2017

Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, Joseph E. Gonzalez, Deep Mixture of Experts via Shallow Embedding, UAI 2019

Nan Du et al, GLaM: Efficient Scaling of Language Models with Mixture-of-Experts, ICML 2022

Pushing the Limits of Scaling from a Software and Hardware Perspective

- Extreme HW/SW co-design for generative models
 - If generative models serve billions of users, the economy of scale calls for further customization
- Automated and fast design cycle
 - Currently it takes 2-3 years to design a new generation of accelerators, slowing down customization and adaptation to new models

Why Co-Design Matters for Deep Learning?

New Models May Break Software and Hardware Assumptions

- Example: EfficientNets vision models
- Despite its low FLOP count, runtime is high
- TPUv3 was not designed for EfficientNet!

Operation	FLOP %	Runtime %
DepthwiseConv2D	5.00%	65.30%
Conv2D	94.67%	34.20%
Other	0.33%	0.50%

FLOP: Floating Point Operation

EfficientNet-B7 Layer Number

Tan and Le, EfficientNet, 2019

FAST: A Full-Stack Custom Accelerator Search Framework

- Addresses compute and memory bottlenecks
- Searches a space of O(10^2300)
 - Datapath: ~10¹¹ search space
 - Compiler: ~10³⁰⁰ search space
 - Scheduler: ~10²⁰⁰⁰ search space

Dan Zhang, Safeen Huda, Ebrahim Songhori, Quoc Le, Anna Goldie, Azalia Mirhoseini, A Full Stack Search Technique for Domain Optimized Deep Learning Accelerators, ASPLOS 2022

FAST's Comprehensive Datapath Design Space

A superset template capable of describing scalar, vector, and matrix processors with a flexible memory hierarchy

Parameter Name	Туре	Potential Values
PEs_x_dim	int	1 to 256, powers of 2
PEs_y_dim	int	1 to 256, powers of 2
Systolic_array_x	int	1 to 256, powers of 2
Systolic_array_y	int	1 to 256, powers of 2
Vector_Unit_Multiplier	int	1 to 16, powers of 2
L1_buffer_config	enum	Private, Shared
L1_input_buffer_size	int	1KB to 1MB, powers of 2
L1_weight_buffer_size	int	1KB to 1MB, powers of 2
L1_output_buffer_size	int	1KB to 1MB, powers of 2
L2_buffer_config	enum	Disabled, Private, Shared
L2_input_buffer_multiplier	int	1x to 128x, powers of 2
L2_weight_buffer_multiplier	int	1x to 128x, powers of 2
L2_output_buffer_multiplier	int	1x to 128x, powers of 2
L3_global_buffer_size	int	0MB to 256MB, powers of 2
GDDR6_channels	int	1 to 8, powers of 2
Native_batch_size	int	1 to 256, powers of 2

34

Efficient Fusion is Key for Properly Evaluating Datapaths

- Accelerator performance is a function of its hardware datapath and how workloads are mapped onto that datapath
- Designed a new ILP-based fusion technique to address memory bandwidth:
 - A new fusion technique capable of fusing the entire model to reduce access to off-chip DRAM
 - Inter-layer activations and weights stay in on-chip SRAM

ILP: Integer Linear Programming

FAST Design for EfficientNet-B7

An example architecture found using FAST with a Perf/TDP objective

	TPUv3 (die-shrunk)	FAST
MXU Dimensions	128x128	32x32
Num MXUs	2x2	64
Global Buffer Size	2x16MiB	128MiB
Compute Utilization	0.14	0.61
Fusion Efficiency	0%	85%
QPS	210	733
Perf/TDP	1	3.91

QPS: Queries Per Second TDP: Thermal Design Power

Co-Design is Key to Unlock Multiplier Gains

Datapath, scheduling, and fusion impact vary across workloads

FAST Search Results: Single Model

- Perf/TDP improvements of ~1.8X to ~6X vs TPUv3
- For reference, a ~2-3x increase between two generations of an accelerator is considered a success

FAST Search Results: Mixture Models

- Yellow bars: customize for a mixture of five models
 - EfficientNet-B7, ResNet50, OCR-RPN, OCR-Rec, BERT-1024
 - 2.4X geometric mean improvement in Perf/TDP

FAST: An Automated Full-Stack HW/SW Co-Design Framework

- FAST: Synthesizing accelerators by searching an O(10²³⁰⁰) datapath, compiler, and scheduler space
- Customizing for one or a family of workloads can lead to significant performance improvements
- ROI analysis demonstrated that custom accelerators can be ROI-positive for moderate-size deployments

Chip Placement Problem

- A chip typically has dozens of blocks
- Each block is a netlist with thousands of memory and millions of logic nodes
- Placement problem:
 - Place nodes of a netlist while optimizing for design constraints, e.g., power, timing, area

Apple 13

Chip Placement is Challenging and Important

- An NP-hard problem
- Takes months to design production placements
- Each day incurs \$XM in labor and opportunity cost

Chip Placement with Reinforcement Learning

- RL agent iteratively optimizes node placements
- Action: Placing the current node on a grid cell
- **Reward:** A weighted average of total wirelength, density, and congestion
- State: Embeddings of chip netlist and canvas

Chip Placement with RL is Extremely Challenging!

Complexity of Chip Placement Problem

Chip Placement with Reinforcement Learning is Even Harder

- Long episode lengths: There are millions of nodes to place
- **Complex rewards:** EDA tools are slow and expensive
- Limited access to prior data: Most chip designs are confidential
- Hard to generalize: Unlike Go and Chess, the board, pieces, rules, and win conditions of the "game" change from chip to chip

Reducing the Complexity of RL Optimization Space

- Shortened RL episode length:
 - Policy places the macros (up to thousands)
 - Analytical solver places millions of standard cells: leveraging their negligible area

Reducing the Complexity of RL Optimization Space

- Shortened RL episode length:
 - Policy places the macros (up to thousands)
 - Analytical solver places millions of standard cells: leveraging their negligible area
- Sped up evaluation time:
 - Designed fast congestion, wirelength, and density costs that correlate with EDA tools

Reducing the Complexity of RL Optimization Space

- Shortened RL episode length:
 - Policy places the macros (up to thousands)
 - Analytical solver places millions of standard cells: leveraging their negligible area
- Sped up evaluation time:
 - Designed fast congestion, wirelength, and density costs that correlate with EDA tools
- Sped up data collection and training through parallel computing

Edge-GNN: A New Edge-Based Graph Neural Network for Learning from Chips

^{*}Node type: One-hot category {Hard macro, soft macro}

Circuit Training Optimization Cost Function

Results on a TPU-v4 Block

Human Expert

Time taken: **~6-8 weeks** Total wirelength: 57.07m Route DRC^{*} violations: 1766

DRC: Design Rule Checking

Circuit Training

Time taken: **24 hours** Total wirelength: 55.42m (-2.9% shorter) Route DRC violations: 1789 (+23, negligible difference)

New Insights From Circuit Training

Circuit Training broke conventional wisdom: e.g., alignment, macro hierarchy, while producing superhuman results.

Circuit Training

Circuit Training Improves as More Chip Netlists are Used In Training

Huge Opportunity: Policy is "Gaining Experience"

Placement cost is a function of wirelength, density, and congestion (lower is better)

Real-World Impact on Accelerator Design

- One of the earliest real-world productionizations of a deep RL method
- Used to design 4 generations of TPUs, saving thousands of engineering hours

Article Published: 09 June 2021

A graph placement methodology for fast chip design

Azalia Mirhoseini ⊠, Anna Goldie ⊠, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean

 Nature
 594, 207–212 (2021)
 Cite this article

 31k
 Accesses
 28
 Citations
 1628
 Altmetric
 Metrics

This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

Summary

- Large generative models are changing the way we work and live!
- Scaling of data, model size, and compute consistently leads to new AI capabilities
- There are many opportunities to improve scaling across the deep learning stack, from data, all the way to hardware design
- Al itself will play a big role in accelerating this scaling!

Thank You!