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The Age of Generative AI!

2Midjourney’s AI generates images GPT4 writes an iOS app

Anthropic’s Claude says its goal is to be a 
helpful, harmless, and honest assistant

Large Language Models (LLMs) and Generative Vision Models are 
disrupting how we live:

● Education
● Software Engineering
● Productivity
● Law
● Finance
● Healthcare 
● Art, and more



Sevilla et al., “Compute Trends Across Three Eras of Machine Learning", 2022

The Driving Force Behind Generative AI is Scaling!
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Deep Learning: 32x every 2 years!

Moore’s Law: 2x every 2 years!
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Scaling Laws for Language Models
Performance of language models can almost precisely be predicted as a function of:

● Amount of compute used
● Dataset size
● Number of parameters in the model

Kaplan et al., Scaling Laws for Neural Language Models, 2020
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Scaling Laws Goes Beyond Language Models1

Henighan et al., Scaling Laws for Autoregressive Generative Modeling, 2020



The Significance of Scaling Laws

● Empirically "guaranteed" continual progress with scaling

● Emergent Behavior: Capabilities that only emerge in larger models

● Systematic compute allocation
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Emergent Behavior: Zero/Few Shot Learning

7Brown et al., GPT-3, 2020



Few Shot Learning Emerges in Larger Models

8Brown et al., GPT-3, 2020



Emergent Behavior: Chain of Thought
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Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021
Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022 (Figure is from this publication)



Chain of Thought Emerges in Large Models

10Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022



Emergent Behavior: Ability to Solve Entirely New Tasks 

11
Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022
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Scaling Laws Enable Systematic Compute Allocation

12OpenAI 2023, GPT4
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What is behind this massive progress?How Can We Push the Limits of Scaling?



14

Deep Learning Systems 

Data

Model

Hardware

Software

Accelerators such as Google TPUs, NVIDIA 
GPUs, SambaNova, Cerebras, Graphcore, …

Compilers and software libraries such as XLA, MLIR, 
TF, Pytorch for accelerators from edge to cloud 

Neural networks and methodologies such as ResNet, 
Transformers, graph neural networks, SL, RL

Different modalities of data and associated 
training mechanisms ...
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● Sparse and Dynamic Neural 
Networks

● Co-design from Application to 
Hardware

● Automating Design Cycle

Data

Model

Hardware

Software

● Reinforcement Learning from Human 
Feedback, Constitutional AI

This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models
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● Sparse and Dynamic Neural 
Networks

● Co-design from Application to 
Hardware

● Automating Design Cycle

Data

Model

Hardware

Software

This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

● Reinforcement Learning from Human 
Feedback, Constitutional AI



Traditional LLM Training and Finetuning

17https://huggingface.co/blog/rlhf

Training data is text (the internet, books, transcripts) and optionally human augmented prompts

Training objective is to predict the next word



We Can Use Human Preferences to Finetune LLMs

18
Stiennon et al., 2020, Learning to summarize from human feedback

● Data quality greatly impacts learning efficiency and 
scaling performance

● We can determine data quality through human ranking

● Humans are asked to rank the outputs of the model 
based on various criteria, for example:

○ Usefulness
○ Harmfulness
○ Truthfulness



Reinforcement Learning from Human Feedback (RLHF) 

We Can Use Reinforcement Learning to Bring Human Preferences to Training

19

Collect Human Feedback
(e.g. Do you prefer summary A or B?)

Train a Reward Model based 
on Human Feedback
(e.g. Given summaries A and B, the 
neural net model predicts human label)

Use RL to Finetune the LLMs, 
Maximizing the Reward Model
(e.g. LLM generates summaries that 
maximize the reward model)

Bai et al., 2022, Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback



RLHF Can Drastically Improve Scaling 

201. Stiennon et al., 2020, Learning to summarize from human feedback

Performance on summarization1
Performance on filling python function body given 
the context2

2. Bai et al., 2022, Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback

Model size (#params)Model size (#params)



Constitutional AI: Self-Improving AI Using AI Feedback

In “Constitutional AI”, the LLM follows a Constitution (set of principles written by a human) 
to generate feedback for self-improvement

Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback (Used in Anthropic’s Claude) 21



Constitutional AI: Self-Improving AI Using AI Feedback

In “Constitutional AI”, the LLM follows a Constitution (set of principles written by a human) 
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and 
revisions

Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback (Used in Anthropic’s Claude) 22



Constitutional AI: Self-Improving AI using AI Feedback

In “Constitutional AI”, the LLM follows a Constitution (set of principles written by a human) 
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and 
revisions

Example:

Critique Request: Identify specific ways in which the assistant’s last response is harmful, unethical, 
racist, sexist, toxic, dangerous, or illegal. 

Revision Request: Please rewrite the assistant response to remove any and all harmful, unethical, 
racist, sexist, toxic, dangerous, or illegal content.

Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback (Used in Anthropic’s Claude) 23



Constitutional AI: Self-Improving AI using AI Feedback

In “Constitutional AI”, the LLM follows a Constitution (set of principles written by a human) 
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and 
revisions

1. Reinforcement learning from AI feedback (RLAIF):
a. Train a preference model based on LLM (from Step 1) responses and the 

constitution
b. Finetune the LLM to maximize the preference model 

Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback (Used in Anthropic’s Claude) 24



Constitutional AI: Self-Improving AI using AI Feedback

In “Constitutional AI”, the LLM follows a Constitution (set of principles written by a human) 
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and 
revisions

1. Reinforcement learning from AI feedback (RLAIF):
a. Train a preference model based on LLM (from Step 1) responses and the 

constitution
b. Finetune the LLM to maximize the preference model 

Example: Choose the response that answers the human in the most thoughtful, respectful and cordial 
manner.

Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback (Used in Anthropic’s Claude) 25



Constitutional AI Improves Scaling over RLHF

26Bai et al., 2022, Constitutional AI: Harmlessness from AI Feedback

RLHF for helpfulness
RLHF for helpfulness and harmlessness
RLAIF- Constitution AI
RLAIF- Constitution AI + Chain of Thought

RLHF: Reinforcement Learning from Human 
Feedback
RLAIF: Reinforcement Learning from AI Feedback

In “Constitutional AI”, the LLM follows a Constitution (set of principles written by a human) 
to generate feedback for self-improvement
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This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

● Human Feedback and AI Feedback 
with Reinforcement Learning

● Sparse and Dynamic Neural 
Networks

● Co-design from Application to 
Hardware

● Automating Design Cycle

Data

Model

Hardware

Software



Can We Train More Efficient Models by Introducing Sparsity

Noam Shazeer*, Azalia Mirhoseini*, Krzys Maziarz*, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean, 
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, 2017

● Traditionally, neural networks are dense: 

○ Each input is processed by the entire model

28

● Mixture-of-Experts (MoE) is a dynamic model

○ Large weight matrices are replaced with a 
mixture of smaller weight matrices (“experts” )

○ A gating function routes inputs to only a small 
number of experts



MoEs for Transformer based Language Models

29

Dense model

Sparse models

Fedus et al., Switch Transformers, 2021



Deep Mixture of Experts

Noam Shazeer*, Azalia Mirhoseini*, Krzys Maziarz*, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean, 
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, ICLR 2017

Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, Joseph E. 
Gonzalez, Deep Mixture of Experts via Shallow Embedding, UAI 2019

Nan Du et al, GLaM: Efficient Scaling of Language Models with Mixture-of-Experts, ICML 2022

● 2017: Introduced sparsely gated Mixture of Experts (MoEs), and trained the first 
100B parameter language model

● 2019: MoEs shown to be effective for both language and vision tasks

● 2022: Used in GLaM: an MoE-based 1T+ parameter LLM by Google
○ ~2x more efficient training and inference than GPT-3

● 2023: GPT4 is reportedly an MoE based model!

30



Pushing the Limits of Scaling from a Software and Hardware Perspective

● Extreme HW/SW co-design for generative models

○ If generative models serve billions of users, the economy 
of scale calls for further customization

● Automated and fast design cycle

○ Currently it takes 2-3 years to design a new generation of 
accelerators, slowing down customization and adaptation 
to new models

31

● Co-design, from 
Application to Hardware

● Automating Design Cycle

Data

Model

Hardware

Software

AI Systems 
& Chips



Operation FLOP % Runtime %
DepthwiseConv2D 5.00% 65.30%
Conv2D 94.67% 34.20%
Other 0.33% 0.50%

Why Co-Design Matters for Deep Learning?
New Models May Break Software and Hardware Assumptions

● Example: EfficientNets vision models

● Despite its low FLOP count, runtime is high

● TPUv3 was not designed for EfficientNet!
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EfficientNet-B7 Layer Number
Tan and Le, EfficientNet, 2019
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FLOP: Floating Point Operation



A. Parashar et al., 
“Timeloop”, ISPASS 2019

● Designs custom accelerators for a single 
workload, or a mixture of workloads

● Addresses compute and memory bottlenecks

● Searches a space of O(10^2300)
■ Datapath: ~1011 search space
■ Compiler: ~10300 search space
■ Scheduler: ~102000 search space

Dan Zhang, Safeen Huda, Ebrahim Songhori, Quoc Le, Anna Goldie, Azalia Mirhoseini, 
A Full Stack Search Technique for Domain Optimized Deep Learning Accelerators, ASPLOS 2022

FAST: A Full-Stack Custom Accelerator Search Framework

33
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Global Memory

Off-chip DRAM

Systolic 
Array

L1 Memory

L2 Memory

VPU

A superset template capable of describing scalar, vector, and 
matrix processors with a flexible memory hierarchy

FAST’s Comprehensive Datapath Design Space

Parameter Name Type Potential Values

PEs_x_dim int 1 to 256, powers of 2

PEs_y_dim int 1 to 256, powers of 2

Systolic_array_x int 1 to 256, powers of 2

Systolic_array_y int 1 to 256, powers of 2

Vector_Unit_Multiplier int 1 to 16, powers of 2

L1_buffer_config enum Private, Shared

L1_input_buffer_size int 1KB to 1MB, powers of 2

L1_weight_buffer_size int 1KB to 1MB, powers of 2

L1_output_buffer_size int 1KB to 1MB, powers of 2

L2_buffer_config enum Disabled, Private, Shared

L2_input_buffer_multiplier int 1x to 128x, powers of 2

L2_weight_buffer_multiplier int 1x to 128x, powers of 2

L2_output_buffer_multiplier int 1x to 128x, powers of 2

L3_global_buffer_size int 0MB to 256MB, powers of 2

GDDR6_channels int 1 to 8, powers of 2

Native_batch_size int 1 to 256, powers of 2
34



● Accelerator performance is a function of its hardware datapath and how workloads are mapped 
onto that datapath

● Designed a new ILP-based fusion technique to address memory bandwidth: 
○ A new fusion technique capable of fusing the entire model to reduce access to off-chip DRAM
○ Inter-layer activations and weights stay in on-chip SRAM 

Conv2D Element-wise 
Op

Fusion Fusion
Fusion

Inter-fusion activation not 
written/read from/to DRAM

Conv2D Element-wise 
Op

Efficient Fusion is Key for Properly Evaluating Datapaths

35ILP: Integer Linear Programming



An example architecture found using FAST with a Perf/TDP objective

FAST Design for EfficientNet-B7 

TPUv3 (die-shrunk) FAST

MXU Dimensions 128x128 32x32

Num MXUs 2x2 64

Global Buffer Size 2x16MiB 128MiB

Compute Utilization 0.14 0.61

Fusion Efficiency 0% 85%

QPS 210 733

Perf/TDP 1 3.91

QPS: Queries Per Second
TDP: Thermal Design Power

36



Co-Design is Key to Unlock Multiplier Gains
Datapath, scheduling, and fusion impact vary across workloads

37



FAST Search Results: Single Model

● Perf/TDP improvements of ~1.8X to ~6X vs TPUv3

● For reference, a ~2-3x increase between two generations of an accelerator is 
considered a success

EfficientNet-B0 B1 B2 B3 B4 B5 B6 B7

Pe
rf/

TD
P 

vs
. T

PU
-v

3

TPU-v3 
Baseline

TPU-v3 + FAST scheduling/fusion FAST search - single workload

ResNet50 OCR-RPN OCR-Rec BERT-
1024

BERT-128 GeoMean GeoMean-5

38TDP: Thermal Design Power



● Yellow bars: customize for a mixture of five models 
○ EfficientNet-B7, ResNet50, OCR-RPN, OCR-Rec, BERT-1024
○ 2.4X geometric mean improvement in Perf/TDP

Yellow bar is customized for these five models
EfficientNet-B0 B1 B2 B3 B4 B5 B6 B7
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vs
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TPU-v3 
Baseline

TPU-v3 + FAST scheduling/fusion FAST search - single workload

ResNet50 OCR-RPN OCR-Rec BERT-
1024

BERT-128 GeoMean GeoMean-5

FAST search - multi workload

39

FAST Search Results: Mixture Models



● FAST: Synthesizing accelerators by searching an 
O(10^2300) datapath, compiler, and scheduler space

● Customizing for one or a family of workloads can 
lead to significant performance improvements

● ROI analysis demonstrated that custom accelerators 
can be ROI-positive for moderate-size deployments 

FAST: An Automated Full-Stack HW/SW Co-Design Framework

Dan Zhang, Safeen Huda, Ebrahim Songhori, Quoc Le, Anna Goldie, Azalia Mirhoseini, 
A Full Stack Search Technique for Domain Optimized Deep Learning Accelerators, ASPLOS 2022 40



● A chip typically has dozens of blocks
● Each block is a netlist with thousands of memory and millions of logic nodes
● Placement problem: 

○ Place nodes of a netlist while optimizing for design constraints, e.g., power, timing, area

Chip Placement Problem

Apple 13 TPU v2
41



● An NP-hard problem

● Takes months to design production placements

● Each day incurs $XM in labor and opportunity cost 

Chip Placement is Challenging and Important

42



Proprietary + Confidential

● RL agent iteratively optimizes node placements

● Action: Placing the current node on a grid cell

● Reward: A weighted average of total wirelength, 
density, and congestion 

● State: Embeddings of chip netlist and canvas

Chip Placement with Reinforcement Learning

Schulman et al., Proximal Policy 
Optimization (PPO), 2017

43

https://arxiv.org/search/cs?searchtype=author&query=Schulman%2C+J


Chip Placement with RL is Extremely Challenging!

44



Number of states ~ 10123 Number of states ~ 10360 Number of states ~ 109000

Chess Go Chip Placement

Complexity of Chip Placement Problem

45



● Long episode lengths: There are millions of nodes to place

● Complex rewards: EDA tools are slow and expensive

● Limited access to prior data: Most chip designs are confidential

● Hard to generalize: Unlike Go and Chess, the board, pieces, rules, and win 
conditions of the “game” change from chip to chip

Chip Placement with Reinforcement Learning is Even Harder

46



Agent Agent Agent Agent

Reducing the Complexity of RL Optimization Space

● Shortened RL episode length:
○ Policy places the macros (up to thousands)

○ Analytical solver places millions of standard cells: leveraging their negligible area

47



● Shortened RL episode length:
○ Policy places the macros (up to thousands)

○ Analytical solver places millions of standard cells: leveraging their negligible area

● Sped up evaluation time:

○ Designed fast congestion, wirelength, and density costs that correlate with EDA tools 

Reducing the Complexity of RL Optimization Space
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● Shortened RL episode length:
○ Policy places the macros (up to thousands)

○ Analytical solver places millions of standard cells: leveraging their negligible area

● Sped up evaluation time:

○ Designed fast congestion, wirelength, and density costs that correlate with EDA tools 
● Sped up data collection and training through parallel computing

Reducing the Complexity of RL Optimization Space

49



Netlist Metadata
(total number of wires and 

macros, name of netlist)

fc

fc

Wirelength

Congestion

Node Feature
(x, y, width, height, type*)

Graph Adjacency 
(macro, standard cell clusters)

*Node type: One-hot category {Hard macro, soft macro}

Edge-GNN: A New Edge-Based Graph Neural Network for Learning from 
Chips

50



𝝷: RL policy’s parameters 

G: Set of training chips

K: Number of chips in G

J: Cost function

Rp,g: Reward for Placement p on Chip g

Circuit Training Optimization Cost Function

Cost Function Neural Architecture 

51



Human Expert Circuit Training

Time taken: ~6-8 weeks
Total wirelength: 57.07m
Route DRC* violations: 1766

DRC: Design Rule Checking 

Time taken: 24 hours
Total wirelength: 55.42m (-2.9% shorter)
Route DRC violations: 1789 (+23, negligible difference)

Results on a TPU-v4 Block

52



New Insights From Circuit Training

Human Expert Circuit Training

Circuit Training broke conventional wisdom: e.g., alignment, macro hierarchy, while 
producing superhuman results.

53



Huge Opportunity: Policy is “Gaining Experience” 

Circuit Training Improves as More Chip Netlists are Used In Training 
Pl
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Small dataset 
(2 blocks)

Medium dataset 
(5 blocks)

0.125

0.15

0.175

Zero-shot @ 0h Fine-tune @ 10h Fine-tune @ 20h

0.2

Fine-tune @ 30h Fine-tune @ 40h

0.225

0.25

Large dataset 
(20 blocks)

Placement cost is a function of wirelength, density, and congestion (lower is better)
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● One of the earliest real-world 
productionizations of a deep RL method 

● Used to design 4 generations of TPUs, 
saving thousands of engineering hours

Real-World Impact on Accelerator Design  

55Open-sourced: github.com/google-research/circuit_training
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This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

● Human Feedback and AI Feedback 
with Reinforcement Learning

● Sparse and Dynamic Neural 
Networks

● Co-design, from Application to 
Hardware

● Automating Design Cycle

Data

Model

Hardware

Software



● Large generative models are changing the way we work and live!

● Scaling of data, model size, and compute consistently leads to new 
AI capabilities 

● There are many opportunities to improve scaling across the deep 
learning stack, from data, all the way to hardware design

● AI itself will play a big role in accelerating this scaling!

Summary

57

Data

Model

Hardware

Software



Thank You!
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