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The Age of Generative Al!
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Art, and more

Anthropic’s Claude says its goal is to be a
helpful, harmless, and honest assistant

~ The New York Times

https://www.nytimes.com » 2023/03/08 » technology > c...  }

The Chatbots Are Here, and the Internet Industry Is in a Tizzy
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The Driving Force Behind Generative Al is Scaling!
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Scaling Laws for Language Models
Performance of language models can almost precisely be predicted as a function of:

e Amount of compute used
e Dataset size
e Number of parameters in the model
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Scaling Laws Goes Beyond Language Models’
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The Significance of Scaling Laws

e Empirically "guaranteed” continual progress with scaling

e Emergent Behavior: Capabilities that only emerge in larger models

e Systematic compute allocation



Emergent Behavior: Zero/Few Shot Learning

Few-shot
Zero-shot

In addition to the task description, the model sees a few

The model predicts the answer given only a natural language examples of the task. No gradient updates are performed.

description of the task. No gradient updates are performed.

Translate English to French: task description

Translate English to French: task description
sea otter => loutre de mer examples

cheese => prompt
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese => prompt

Brown et al., GPT-3, 2020



Few Shot Learning Emerges in Larger Models

Aggregate Performance Across Benchmarks
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Brown et al., GPT-3, 2020



Standard Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

- J

Model Output
A: The answer is 27. x

Emergent Behavior: Chain of Thought

Chain-of-Thought Prompting
Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?
\_ J

Model Output

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 = 9. The
answeris 9.

Nye et al., Show Your Work: Scratchpads for Intermediate Computation with Language Models, 2021
Wei et al., Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, 2022 (Figure is from this publication)




Chain of Thought Emerges in Large Models
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Emergent Behavior: Ability to Solve Entirely New Tasks

Accuracy (%)
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Scaling Laws Enable Systematic Compute Allocation

OpenAl 2023, GPT4

Capability prediction on 23 coding problems
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How Can We Push the Limits of Scaling?

13



Deep Learning Systems

Different modalities of data and associated
training mehanisms

Neural networks and methodologies such as ResNet,
Transformers, graph neural networks, SL, RL

0000000 (y‘f

HE G So e sEe e
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. Compilers and software libraries such as XLA, MLIR,
. TF, Pytorch for accelerators from edge to cloud

Accelerators such as Google TPUs, NVIDIA
GPUs, SambaNova, Cerebras, Graphcore, ...

14



This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

e Reinforcement Learning from Human
Feedback, Constitutional Al

e Sparse and Dynamic Neural
Networks

e Co-design from Application to
Hardware

‘ e Automating Design Cycle

15



This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

e Reinforcement Learning from Human
Feedback, Constitutional Al

e Sparse and Dynamic Neural
Networks

e Co-design from Application to
Hardware

‘ e Automating Design Cycle

16



Traditional LLM Training and Finetuning

Training data is text (the internet, books, transcripts) and optionally human augmented prompts

Training objective is to predict the next word

https://huggingface.co/blog/rlhf

Prompts & Text Dataset

V

Train Language Model

Initial Language Model

SEEEEEEN
|_ RN RN NN |
L BN BN

Human Augmented
Text (Optional)

17



We Can Use Human Preferences to Finetune LLMs

e Data quality greatly impacts learning efficiency and
scaling performance

e \We can determine data quality through human ranking

e Humans are asked to rank the outputs of the model
based on various criteria, for example:
o Usefulness
o Harmfulness
o Truthfulness

Stiennon et al., 2020, Learning to summarize from human feedback

A Reddit post is
sampled from
the Reddit
TL;DR dataset.

Various policies
are used to
sample a set of
summaries.

Two summaries
are selected for
evaluation.

A human judges
which is a better
summary of the
post.
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%
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=
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“j is better than k”
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Reinforcement Learning from Human Feedback (RLHF)

We Can Use Reinforcement Learning to Bring Human Preferences to Training

Collect Human Feedback
(e.g. Do you prefer summary A or B?)

\ 4

Train a Reward Model based

on Human Feedback
(e.g. Given summaries A and B, the
neural net model predicts human label)

\ 4

Use RL to Finetune the LLMs,

Maximizing the Reward Model
(e.g. LLM generates summaries that
maximize the reward model)

Bai et al., 2022, Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback

19



RLHF Can Drastically Improve Scaling

Performance on filling python function body given

Performance on summarization’ the context?
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1. Stiennon et al., 2020, Learning to summarize from human feedback
2. Bai et al., 2022, Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback



Constitutional Al: Self-Improving Al Using Al Feedback

In “Constitutional Al”, the LLM follows a Constitution (set of principles written by a human)
to generate feedback for self-improvement

Bai et al., 2022, Constitutional Al: Harmlessness from Al Feedback (Used in Anthropic’s Claude) 21



Constitutional Al: Self-Improving Al Using Al Feedback

In “Constitutional Al”, the LLM follows a Constitution (set of principles written by a human)
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and
revisions
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Constitutional Al: Self-Improving Al using Al Feedback

In “Constitutional Al”, the LLM follows a Constitution (set of principles written by a human)
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and
revisions

Example:

Critique Request: |dentify specific ways in which the assistant’s last response is harmful, unethical,
racist, sexist, toxic, dangerous, or illegal.

Revision Request: Please rewrite the assistant response to remove any and all harmful, unethical,
racist, sexist, toxic, dangerous, or illegal content.

Bai et al., 2022, Constitutional Al: Harmlessness from Al Feedback (Used in Anthropic’s Claude) 23



Constitutional Al: Self-Improving Al using Al Feedback

In “Constitutional Al”, the LLM follows a Constitution (set of principles written by a human)
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and
revisions

1. Reinforcement learning from Al feedback (RLAIF):
a. Train a preference model based on LLM (from Step 1) responses and the
constitution
b. Finetune the LLM to maximize the preference model

Bai et al., 2022, Constitutional Al: Harmlessness from Al Feedback (Used in Anthropic’s Claude) 24



Constitutional Al: Self-Improving Al using Al Feedback

In “Constitutional Al”, the LLM follows a Constitution (set of principles written by a human)
to generate feedback for self-improvement

1. Supervised learning (SL): Finetune LLM on data generated by self-critique and
revisions

1. Reinforcement learning from Al feedback (RLAIF):
a. Train a preference model based on LLM (from Step 1) responses and the
constitution
b. Finetune the LLM to maximize the preference model

Example: Choose the response that answers the human in the most thoughtful, respectful and cordial
manner.

Bai et al., 2022, Constitutional Al: Harmlessness from Al Feedback (Used in Anthropic’s Claude) 25



Constitutional Al Improves Scaling over RLHF

In “Constitutional Al”, the LLM follows a Constitution (set of principles written by a human)
to generate feedback for self-improvement
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This Talk:

Pushing the Limits of Scaling Laws in the Age of Generative Models

Human Feedback and Al Feedback
with Reinforcement Learning

e Sparse and Dynamic Neural

Networks

Co-design from Application to
Hardware

‘ e Automating Design Cycle

27



Can We Train More Efficient Models by Introducing Sparsity

e Traditionally, neural networks are dense: <
MoE layer

o Each input is processed by the entire model

G(x),| [6(x,s

e Mixture-of-Experts (MoE) is a dynamic model

Expert 1 Expert 3 oo C Expert n

o Large weight matrices are replaced with a
mixture of smaller weight matrices (“experts” )

o A gating function routes inputs to only a small =

number of experts

Noam Shazeer*, Azalia Mirhoseini*, Krzys Maziarz*, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean,
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, 2017



MoEs for Transformer based Language Models
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Deep Mixture of Experts

e 2017: Introduced sparsely gated Mixture of Experts (MoEs), and trained the first
100B parameter language model

e 2019: MoEs shown to be effective for both language and vision tasks

e 2022: Used in GLaM: an MoE-based 1T+ parameter LLM by Google
o ~2x more efficient training and inference than GPT-3

o 2023: GPT4 is reportedly an MoE based model!

Noam Shazeer*, Azalia Mirhoseini*, Krzys Maziarz*, Andy Davis, Quoc Le, Geoffrey Hinton, Jeff Dean,
Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, ICLR 2017

Xin Wang, Fisher Yu, Lisa Dunlap, Yi-An Ma, Ruth Wang, Azalia Mirhoseini, Trevor Darrell, Joseph E.
Gonzalez, Deep Mixture of Experts via Shallow Embedding, UAI 2019

Nan Du et al, GLaM: Efficient Scaling of Language Models with Mixture-of-Experts, ICML 2022
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Pushing the Limits of Scaling from a Software and Hardware Perspective

Extreme HW/SW co-design for generative models

O

Al

A 4

If generative models serve billions of users, the economy
of scale calls for further customization

Systems
& Chips

Automated and fast design cycle

O

Currently it takes 2-3 years to design a new generation of
accelerators, slowing down customization and adaptation

to new models

Co-design, from
Application to Hardware

Automating Design Cycle
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Why Co-Design Matters for Deep Learning?
New Models May Break Software and Hardware Assumptions

e Example: EfficientNets vision models ~ Operaon  FLOP% Runtime%

DepthwiseConv2D 5.00% 65.30%
e Despite its low FLOP count, runtime is high Conv2D 94.67% 34.20%
Other 0.33% 0.50%

e TPUv3 was not designed for EfficientNet!

1.00
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Compute Utilization Ratio
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2

FLOP: Floating Point Operation
Tan and Le, EfficientNet, 2019

EfficientNet-B7 Layer Number
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FAST: A Full-Stack Custom Accelerator Search Framework

Power and Area

Constraints

Bt

e Designs custom accelerators for a single
workload, or a mixture of workloads

e Addresses compute and memory bottlenecks

e Searches a space of O(10%2300)
m Datapath: ~10"" search space
m Compiler: ~103% search space
m Scheduler: ~10%°% search space

Dan Zhang, Safeen Huda, Ebrahim Songhori, Quoc Le, Anna Goldie, Azalia Mirhoseini,
A Full Stack Search Technique for Domain Optimized Deep Learning Accelerators, ASPLOS 2022

Neural
Network
Models

Black-Box Optimizer (Vizier) |€«——————
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Op Tiling &
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Power Estimation

P
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|

FAST Fusion /

A. Parashar et al.,

“Timeloop”, ISPASS 2019

End-to-End
Performance &
Power Estimate
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PE « PE «..— PE
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Global Memory

’

\
A\

A superset template capable of describing scalar, vector, and
matrix processors with a flexible memory hierarchy

Systolic
Array
VPU
L1 Memory

L2 Memory

Off-chip DRAM

FAST's Comprehensive Datapath Design Space

PEs x_dim

PEs y dim
Systolic_array_x
Systolic_array_y
Vector_Unit_Multiplier
L1_buffer_config

L1 _input_buffer_size
L1_weight_buffer_size

L1 _output_buffer_size

L2 buffer_config

L2 input_buffer_multiplier
L2 weight_buffer_multiplier
L2 output_buffer_multiplier
L3 global_buffer_size
GDDRG6_channels

Native_batch_size

int
int
int
int
int
enum
int
int
int
enum
int
int
int
int
int

int

1 to 256, powers of 2
1 to 256, powers of 2
1 to 256, powers of 2
1 to 256, powers of 2
1 to 16, powers of 2
Private, Shared
1KB to 1MB, powers of 2
1KB to 1MB, powers of 2
1KB to 1MB, powers of 2
Disabled, Private, Shared
1x to 128x, powers of 2
1x to 128x, powers of 2
1x to 128x, powers of 2
OMB to 256MB, powers of 2
1 to 8, powers of 2

1 to 256, powers of 2
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Efficient Fusion is Key for Properly Evaluating Datapaths

e Accelerator performance is a function of its hardware datapath and how workloads are mapped
onto that datapath

e Designed a new ILP-based fusion technique to address memory bandwidth:
o A new fusion technique capable of fusing the entire model to reduce access to off-chip DRAM
o Inter-layer activations and weights stay in on-chip SRAM

Fusion

Fusion Fusion

Element-wise > Sl | Element-wise

Conv2D
onv —_— Op Op

Inter-fusion activation not
written/read from/to DRAM

ILP: Integer Linear Programming



FAST Design for EfficientNet-B7

An example architecture found using FAST with a Perf/TDP objective

MXU Dimensions
Num MXUs

Global Buffer Size
Compute Utilization
Fusion Efficiency
QPS

Perf/TDP

QPS: Queries Per Second
TDP: Thermal Design Power

TPUv3 (die-shrunk)
128x128
2X2
2x16MiB
0.14
0%
210

1

FAST
32x32
64
128MiB
0.61
85%
733
3.91
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Co-Design is Key to Unlock Multiplier Gains

Datapath, scheduling, and fusion impact vary across workloads

B FAST Fusion Datapath W Scheduling M TPUv3 Baseline

Speedup vs TPUv3

O =~ N W & O O N

EfficientNet-BO B3 B4 B7 ResNet-50 OCR-RPN OCR-Rec BERT-128 BERT-1024

37



FAST Search Results: Single Model

e Perf/TDP improvements of ~1.8X to ~6X vs TPUv3

e Forreference, a ~2-3x increase between two generations of an accelerator is
considered a success

B TPU-v3 B TPU-v3 + FAST scheduling/fusion ™ FAST search - single workload
7 Baseline
6
Q
5 5
o
s 4
5 3
=
5 2
o
0
EfficientNet-BO B1 B2 B3 B4 ResNet50 OCR-RPN OCR-Rec BERT-128 BERT- GeoMean GeoMean-5
TDP: Thermal Design Power 1024
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Perf/TDP vs. TPU-v3

FAST Search Results: Mixture Models

e Yellow bars: customize for a mixture of five models
o EfficientNet-B7, ResNet50, OCR-RPN, OCR-Rec, BERT-1024
o 2.4X geometric mean improvement in Perf/TDP

B TPU-v3 B TPU-v3 + FAST scheduling/fusion M FAST search - single workload FAST search - multi workload
7 Baseline
6
5
4
3
2
0
EfficientNet-BO B1 B2 B3 B4 ResNet50 OCR RPN OCR Rec BERT-128 BERT- GeoMean GeoMean- 5

Yellow bar is customized for these five models

1?24




FAST: An Automated Full-Stack HW/SW Co-Design Framework

e FAST: Synthesizing accelerators by searching an o
0O(1072300) datapath, compiler, and scheduler space

e Customizing for one or a family of workloads can e

. . g . Models
lead to significant performance improvements

e ROl analysis demonstrated that custom accelerators
can be ROI-positive for moderate-size deployments

Dan Zhang, Safeen Huda, Ebrahim Songhori, Quoc Le, Anna Goldie, Azalia Mirhoseini,
A Full Stack Search Technique for Domain Optimized Deep Learning Accelerators, ASPLOS 2022
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Chip Placement Problem

e A chip typically has dozens of blocks
e Each block is a netlist with thousands of memory and millions of logic nodes

e Placement problem:
o Place nodes of a netlist while optimizing for design constraints, e.g., power, timing, area

1CI Link PCle Link

[

Miscellanenous
Datapath

Matrix Multiply Unit
(128 x 128 x 16b
= 16K MAC)

HBM |gq
port al
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Chip Placement is Challenging and Important

e An NP-hard problem
e Takes months to design production placements

e Each day incurs $XM in labor and opportunity cost

42



Chip Placement with Reinforcement Learning

RL agent iteratively optimizes node placements
Action: Placing the current node on a grid cell

Reward: A weighted average of total wirelength,
density, and congestion

State: Embeddings of chip netlist and canvas

—— a,~n(als)

Floorplanning
Environment

A

Schulman et al., Proximal Policy

Optimization (PPO), 2017

place each node

Y

- R
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https://arxiv.org/search/cs?searchtype=author&query=Schulman%2C+J

Chip Placement with RL is Extremely Challenging!
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Complexity of Chip Placement Problem

Chip Placement

Number of states ~ 10123 Number of states ~ 10360 Number of states ~ 109000

45



Chip Placement with Reinforcement Learning is Even Harder

e Long episode lengths: There are millions of nodes to place
e Complex rewards: EDA tools are slow and expensive
e Limited access to prior data: Most chip designs are confidential

e Hard to generalize: Unlike Go and Chess, the board, pieces, rules, and win
conditions of the “game” change from chip to chip

46



Reducing the Complexity of RL Optimization Space

e Shortened RL episode length:

o Policy places the macros (up to thousands)

o Analytical solver places millions of standard cells: leveraging their negligible area

47



Reducing the Complexity of RL Optimization Space

e Shortened RL episode length:

o Policy places the macros (up to thousands)

o Analytical solver places millions of standard cells: leveraging their negligible area
e Sped up evaluation time:

o Designed fast congestion, wirelength, and density costs that correlate with EDA tools
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Reducing the Complexity of RL Optimization Space

e Shortened RL episode length:

o Policy places the macros (up to thousands)

o Analytical solver places millions of standard cells: leveraging their negligible area
e Sped up evaluation time:

o Designed fast congestion, wirelength, and density costs that correlate with EDA tools
e Sped up data collection and training through parallel computing

Actor 0 Policy Reverb
— o | 2t Replay Buffer
o= Sctoy, | HeP1aY Learner
(T
———

Reverb

Variable Container

Policy

%% push variables
(munua]




Edge-GNN: A New Edge-Based Graph Neural Network for Learning from
Chips
while Not converged do

Update edge: e;; = fci1(concat[feo(vi)|feo(vi)ws;])
Update node: v; = meanjeN(v,-)(eij)

end

Node Feature

(%, y, width, height, type*) ’
— Oﬁ\a —> fc H——» Wirelength

Graph Adjacency —»
(macro, standard cell clusters)

fc —» Congestion

Netlist Metadata

(total number of wires and
macros, name of netlist)

*Node type: One-hot category {Hard macro, soft macro} 50



Circuit Training Optimization Cost Function

Cost Function

Neural Architecture

—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

1
J(0,G) = K Z Eg pmg [Rp,g]
g~G

J: Cost function

Rp,g: Reward for Placement p on Chip g
G: Set of training chips

K: Number of chips in G

0: RL policy’s parameters
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Results on a TPU-v4 Block

Human Expert

.

Time taken: ~6-8 weeks
Total wirelength: 57.07m
Route DRC’ violations: 1766

DRC: Design Rule Checking

Circuit Training

-

Time taken: 24 hours
Total wirelength: 55.42m (-2.9% shorter)
Route DRC violations: 1789 (+23, negligible difference)
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New Insights From Circuit Training

Circuit Training broke conventional wisdom: e.g., alignment, macro hierarchy, while
producing superhuman results.

Human Expert Circuit Training

1_,t -‘—]




Circuit Training Improves as More Chip Netlists are Used In Training
Huge Opportunity: Policy is “Gaining Experience”

B Small dataset B Medium dataset Large dataset
(2 blocks) (5 blocks) (20 blocks)
0.25
0.225
—
S 02
o .
—
c
()
£
o 0.175
&)
LY
o
) II II
0.125
Zero-shot @ Oh Fine-tune @ 10h Fine-tune @ 20h Fine-tune @ 30h Fine-tune @ 40h

Placement cost is a function of wirelength, density, and congestion (lower is better)
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Real-World Impact on Accelerator Design

e One of the earliest real-world
productionizations of a deep RL method

e Used to design 4 generations of TPUs,
saving thousands of engineering hours

Open-sourced: github.com/google-research/circuit_training
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This Talk: Pushing the Limits of Scaling Laws in the Age of Generative Models

e Human Feedback and Al Feedback
with Reinforcement Learning

e Sparse and Dynamic Neural
Networks

e Co-design, from Application to
Hardware

‘ e Automating Design Cycle
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Summary

e Large generative models are changing the way we work and live!

e Scaling of data, model size, and compute consistently leads to new
Al capabilities

e There are many opportunities to improve scaling across the deep
learning stack, from data, all the way to hardware design

e Al itself will play a big role in accelerating this scaling!
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Thank Youl!
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