
Interrupt-driven Maximum Likelihood
Sequence Detection for High Speed Links

Zachary Myers, Stanford VLSI Group

August 31, 2023

High Speed Links

2

RXTX Channel𝑠! 𝑠!

Historically, high speed links ‘leveraged’ the wideband bandwidth and low
noise of wires to deliver high data rates at low latency

Each transmitted symbol is detected – ‘symbol-by-symbol’ to minimize latency
and hardware complexity

No free lunch – symbol-by-symbol detection trades ‘decision’ SNR for simplicity

Symbol Error RateThe key metric for High Speed Links is

Nature always ‘smooths’ things out!

3

RXTX Channel𝑠! 𝑠!

Channel ResponsePulse In Pulse Out

As data rates increase, the channel (wire) starts to ‘smooth’ out the transmitted
symbol pulse, causing symbols to interfere with their neighboring symbols

Channel ResponsePulse In Pulse Out

Nature always ‘smooths’ things out!

4

RXTX Channel𝑠! 𝑠!

As data rates increase, the channel (wire) starts to ‘smooth’ out the transmitted
symbol pulse, causing symbols to interfere with their neighboring symbols

This effect is called ‘Inter-Symbol Interference’ (ISI)

Removing ISI is called ‘Equalization’

Nature always ‘smooths’ things out!

5

RXTX Channel𝑠! 𝑠!

Pulse Out

The largest cursor is the main “cursor”

Nature always ‘smooths’ things out!

6

RXTX Channel𝑠! 𝑠!

Pulse Out

The largest cursor is the main “cursor”

Cursors that happen before are “precursors” Cursors that happen after are “postcursors”

Linear Equalization (Feed-Forward Equalization)

7

Linear Equalization

Sharpen

‘Sharpens the pulse back together’

Nonlinear Equalization (Decision Feedback Equalization)

8

‘Subtract out the effects of previous pulses’

Nonlinear Equalization

Subtract

Nonlinear Equalization (Decision Feedback Equalization)

9

‘Subtract out the effects of previous pulses’

Nonlinear Equalization

Subtract

Note: Nonlinear Equalization
cannot remove ISI from future

symbols

Both FFEs and DFEs are required

The Balance of the Canonical High Speed Link

10

DFEFFEISI

A bit of FFE to reduce the precursor…
A lot of DFE to remove postcursors

Channel𝑠! 𝑠!Nonlinear
Equalization

Linear
Equalization

Canonical Equalization

The Problem: There is never enough bandwidth!

11

Machine Learning drives enormous demand for increased ‘package’ to ‘package’ bandwidth

As the links run faster, the smoothing of the channel increases, and the current equalization
strategy fails

Channel vs Gb/s

Channel𝑠! 𝑠!Nonlinear
Equalization

Linear
Equalization

And it’s no longer free L

12

Channel𝑠! 𝑠!Nonlinear
Equalization

Linear
Equalization

FFEDFEISIDFEFFEISI

And it’s no longer free L

13

Channel𝑠! 𝑠!Nonlinear
Equalization

Linear
Equalization

DFE
FFE

FFE
DFESymbol Rate Symbol Error Rate

Current State Of Electrical Links

ISI’s are friends, not food

14

Symbol-by-Symbol Detection ‘fights’ the channel…

But the channel (ISI) is ‘signal’ – it still encodes information about what
is transmitted

By moving from ‘symbol-by-symbol’ detection to ‘sequence’ detection, you
embrace the channel’s ISI.

ISI’s are friends, not food

15

Pulse Response

ISI’s are friends, not food

16

Pulse Response

Interrupt-driven MLSD-based Links

17

Channel𝑠! 𝑠!Nonlinear
Equalization

Linear
Equalization

Channel𝑠!
Error

Checker
Linear

EQ 𝑠!
Error

Corrector

FIFO

Fo
rk

-o
n-

Fl
ag

Co
m

bi
ne

Interrupt-driven MLSD-based Links

18

Channel𝑠!
Error

Checker
Linear

EQ 𝑠!
Error

Corrector

FIFO

Fo
rk

-o
n-

Fl
ag

Co
m

bi
ne

Initial 𝑠! estimate

Feedforward Error Checker

‘Interrupt-driven’ Sequence Detection

Feedforward Error Checker

Interrupt-driven MLSD-based Links

19

Channel𝑠!
Error

Checker
Linear

EQ 𝑠!
Error

Corrector

FIFO

Fo
rk

-o
n-

Fl
ag

Co
m

bi
ne

‘Interrupt-driven’ Sequence Detection

Initial 𝑠! estimate

𝑑𝑥⃑

Error Free Residual Error Signal

20

Raw Input and Recreation Residual Error Signal

Est Channel −

+

𝑑

𝑥⃑
𝑒

Residual Error Signal with a Single Error

21

Raw Input and Recreation Residual Error Signal

Est Channel −

+

𝑑

𝑥⃑
𝑒

Feed Forward Error Checking

22

Est Channel −

+
𝑒"𝑒

+𝑑

−𝑑!

𝑥⃑

Here is a simplified form of our detection scheme, this version, we call the ‘regret’-
based detector.

For each symbol, you check whether the other decision would’ve led to a smaller
residual error. Basically, do you regret the choice you’ve made?

Feed Forward Error Checking

23

Original Residual Error

Regret Residual Error

3e-4

7e-3

Energy

Energy

We compare between the ‘regret’ residual error and the original residual error by calculating their energy.

If the altered residual error has a lower energy than the original, then the detector raises a flag.

Feed Forward Error Checking

24

In practice, the detector only compares the energy over a small number of symbol times… acceptable given
most of the energy is in the first precursor, the main cursor and the first postcursor.

BUT there is no free lunch… Errors also have ISI L.

SO we extended this type of detector to cover cases with bursts of errors. Ask us me if you want to know
how!

Est Channel −

+
𝑒"𝑒

+𝑑[𝑖 − 1: 𝑖 + 1]

−𝑑!

𝑥⃑[𝑖 − 1: 𝑖 + 1]

Residual Error with Multiple Errors

25

Original Residual Error

Regret Residual Error

Energy

Energy

7e-3

2e-3

Feedforward Error Checker

Interrupt-driven MLSD-based Links

26

Channel𝑠!
Error

Checker
Linear

EQ 𝑠!
Error

Corrector

FIFO

Fo
rk

-o
n-

Fl
ag

Co
m

bi
ne

𝑑𝑥⃑

We have an internal whitepaper that Mark and I wrote on
residual error-based checkers if you are interested!

Interrupt-driven MLSD-based Links

27

Channel𝑠!
Error

Checker
Linear

EQ 𝑠!
Error

Corrector

FIFO

Fo
rk

-o
n-

Fl
ag

Co
m

bi
ne

Feedforward Error Checker

‘Interrupt-driven’ Sequence Detection

Initial 𝑠! estimate

Error Corrector

FIFO

Fo
rk

-o
n-

Fl
ag

Co
m

bi
ne

Interrupt-driven MLSD-based Links

28

Low Latency Path

High Latency Path

Thank You
29

