Scorch
A library for Sparse machine learning

Bobby Yan†, Alexander J. Root†, Trevor Gale**, Fredrik Kjolstad†
†Stanford University, ‡Google Research
Sparse machine learning
The Future of Sparsity in Deep Neural Networks

by Trevor Gale on Dec 3, 2020 | Tags: Accelerators, deep learning, sparsity

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

by Jeff Pool, Abhishek Sawarkar and Jay Rodge

DeepSparse

An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application

DeepSparse is a CPU inference runtime that takes advantage of sparsity within neural networks to execute inference quickly. Coupled with SparseML, an open-source optimization library, DeepSparse enables you to achieve GPU-class performance on commodity hardware.
Two types of sparsity

Model Sparsity
Model Sparsity

- **Weight Sparsity**
- **Activation Sparsity**
- **Structural Sparsity**
Two types of sparsity

Model Sparsity

Data Sparsity
Data Sparsity

- Graphs
- Point clouds
- Recommender systems
Data Sparsity

Graphs
Bag of words
Genomic data

Point clouds
Time series
Transaction data

Recommender systems
Speech data
Sensor data
Sparsity comes from data and model design

- Mixture of experts
- Graph neural networks
- Sparse transformers
- Recommender systems
Bigger is better, so we need sparsity

Training Compute-Optimal Large Language Models, 2022

Scaling Laws for Neural Language Models, 2020
We should care about Sparse ML.
Software for Sparse ML
Software for Dense ML
Dense programming model is unified

PyTorch
TensorFlow 2
JAX

Common abstraction
Similar APIs
Similar feature sets
Sparse programming model is fragmented

- torch.sparse
- tf.sparse
- jax.sparse
- PyG
- DGL
- LightFM
- TorchRec
- TACO
- MLIR Sparse
Sparse programming model is fragmented

- Differing abstractions
- Isolated optimizations
- Duplicated efforts
- Barriers to adoptions

- torch.sparse
- tf.sparse
- jax.sparse
- PyG
- DGL
- LightFM
- TorchRec
- TorchRec
Sparse programming model is fragmented

- torch.sparse
- tf.sparse
- jax.sparse
- PyG
- DGL
- LightFM
- TorchRec
- TACO
- MLIR Sparse
Sparse programming model can be unified
Tensor algebra is all you need.
Sparse learning should be easy.
Making it happen

import scorch as torch

Do everything you're doing with dense tensors. Now with sparse tensors, too. Can it be any easier?
Sparse activation with dense weights?
Sparse activation with dense weights?

Coarse-grained, high-level **structural sparsity** in model architecture.
Sparse formulation.
Example: Mixture of experts

```python
import torch
from torch.nn import functional as F

# Inputs, (B, D_in)
x = torch.randn(B, D_in)
# Expert embeddings, (N_experts, D_in, D_out)
E = torch.randn(N_experts, D_in, D_out)
# Sparse gating function, (B, N_experts)
gates = torch.rand(B, N_experts)
# Select one expert per input
    gates = F.one_hot(gates.argmax(1), N_experts)
# Dispatch inputs to experts, (B, N_experts, D_in)
x_dispatch = torch.rearrange(x, "bd->bnd")
    n=N_experts)
# Apply experts, (B, N_experts, D_out)
y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E)
# Combine expert outputs, (B, D_out)
y = torch.einsum("bnd,bn->bd", y_experts, gates)
```
Example: Mixture of experts

```python
import scorch as torch
from scorch.nn import functional as F

# Inputs, (B, D_in)
x = torch.randn(B, D_in)
# Expert embeddings, (N_experts, D_in, D_out)
E = torch.randn(N_experts, D_in, D_out)
# Sparse gating function, (B, N_experts)
gates = torch.randn(B, N_experts)
# Select one expert per input

gates = F.one_hot(gates.argmax(1), N_experts).to_sparse()
# Dispatch inputs to experts, (B, N_experts, D_in)
x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts)
# Apply experts, (B, N_experts, D_out)
y_experts = torch.einsum("bnd,ndh->bnh", x_dispatch, E)
# Combine expert outputs, (B, D_out)
y = torch.einsum("bnd,bn->bd", y_experts, gates)
```
Overview
Optimization in Scorch

Format inference
Auto-scheduling
Multi-dimensional sparse workspaces
Dynamic dispatch
Compiler architecture

Simplified compilation model over TACO
 Format abstraction
 N-dimensional sparse workspaces
 Data structure selection
 Code generation
Performance

SpMM

Normalized speedup over torch.sparse

Matrix Size

- taco, 95%
- scorch, 95%
- taco, 99%
- scorch, 99%
- 1x torch.sparse.mm
End-to-end applications

- Graph neural networks
- Mixture of experts
- Recommender systems
- Sparse transformers
Ongoing & Future work

Sparse shaping operations
Structured sparsity
 Specialized tensor formats
 Block formats and tensors
Kernel fusion
Broader hardware support