Scorch A library for Sparse machine learning

Bobby Yan⁺, Alexander J. Root⁺, Trevor Gale⁺⁺, Fredrik Kjolstad⁺ ⁺Stanford University, ⁺Google Research

AHA Retreat 2023 | August 31, 2023

Sparse machine learning

The Future of Sparsity in Deep Neural Networks

by Trevor Gale on Dec 3, 2020 | Tags: Accelerators, deep learning, sparsity

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

Jul 20, 2021

By Jeff Pool, Abhishek Sawarkar and Jay Rodge

DeepSparse

An inference runtime offering GPU-class performance on CPUs and APIs to integrate ML into your application

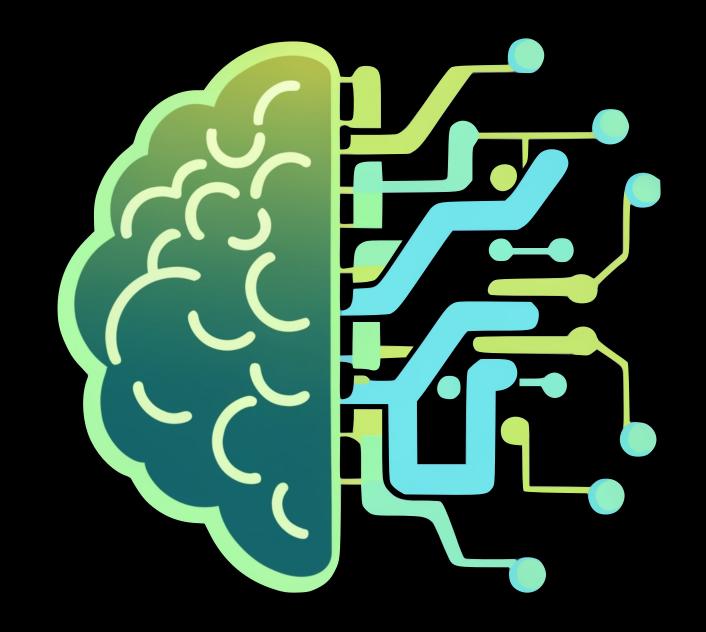
DOCUMENTATION

DeepSparse is a CPU inference runtime that takes advantage of sparsity within neural networks to execute inference quickly. Coupled with SparseML, an open-source optimization library, DeepSparse enables you to achieve GPU-class performance on commodity hardware.

Stanford | Computer Science

🔥 +1 Like 📮 Discuss (13)

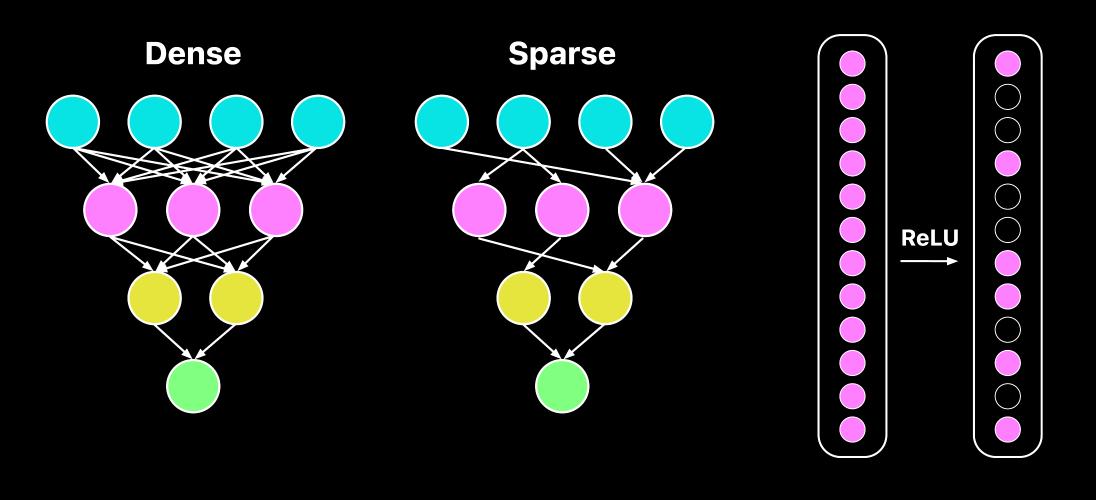
Two types of sparsity



Stanford | Computer Science

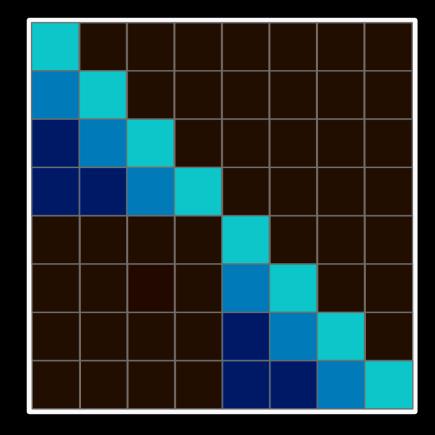
Model Sparsity

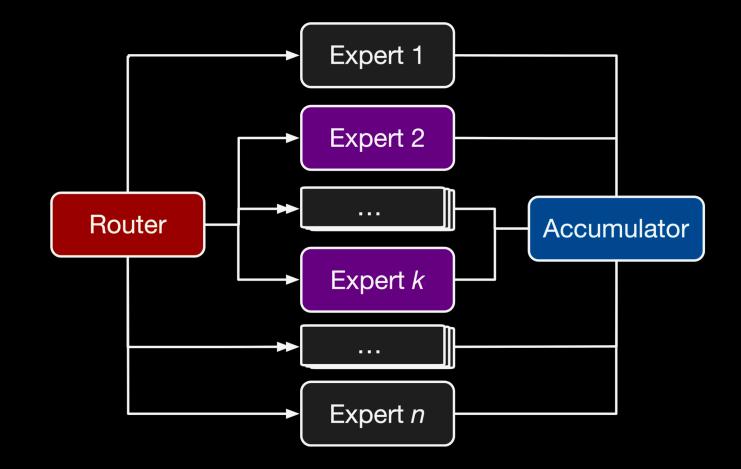
Model Sparsity



Weight Sparsity

Stanford | Computer Science

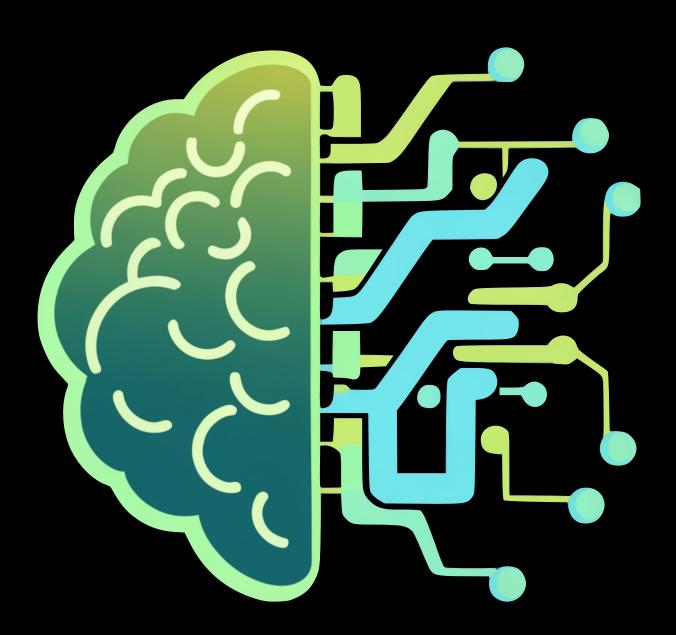




Activation Sparsity

Structural Sparsity

Two types of sparsity

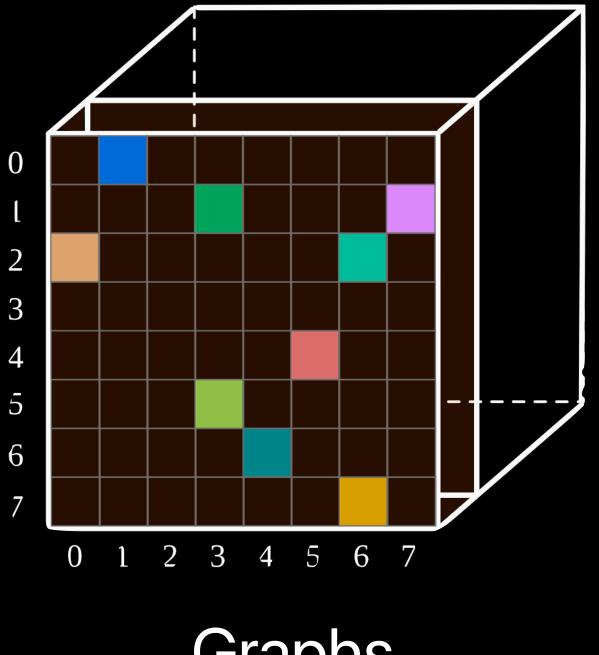


Model Sparsity

Stanford | Computer Science

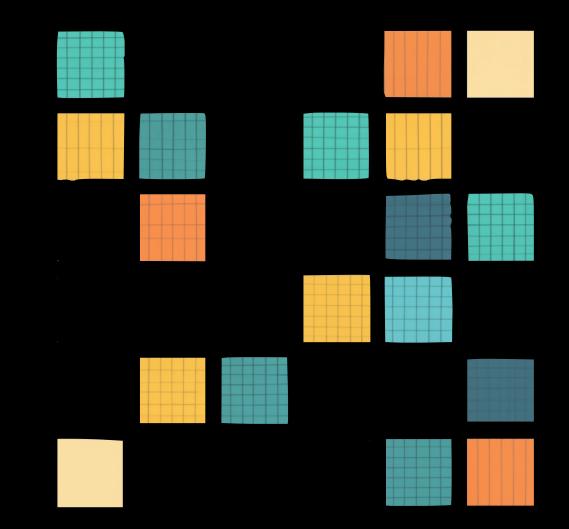
Data Sparsity

Data Sparsity



Graphs

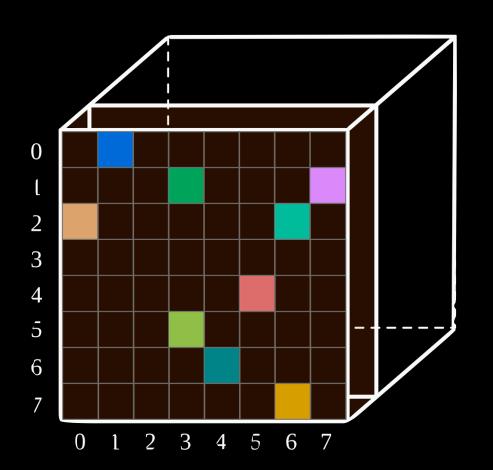
Image source: https://icnweb.kr/2021/46155/



Point clouds

Recommender systems

Data Sparsity



Graphs

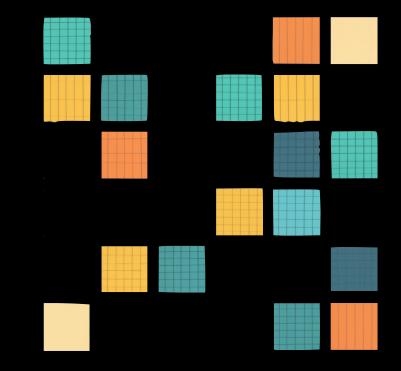
Bag of words

Genomic data

Time series

Transaction data

Stanford | Computer Science Image source: https://icnweb.kr/2021/46155/



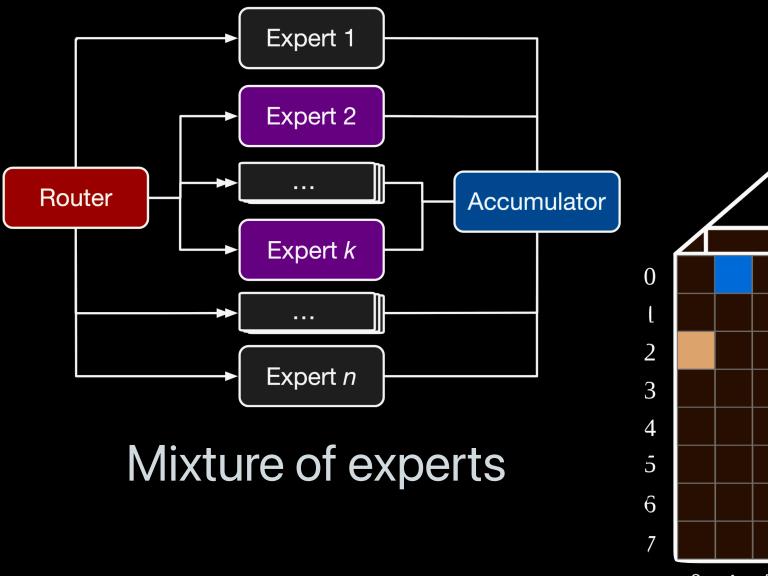
Point clouds

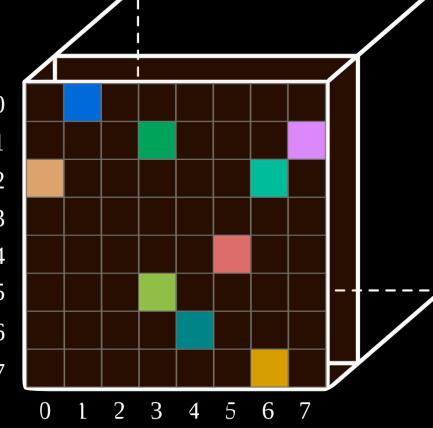
Recommender systems

Speech data

Sensor data

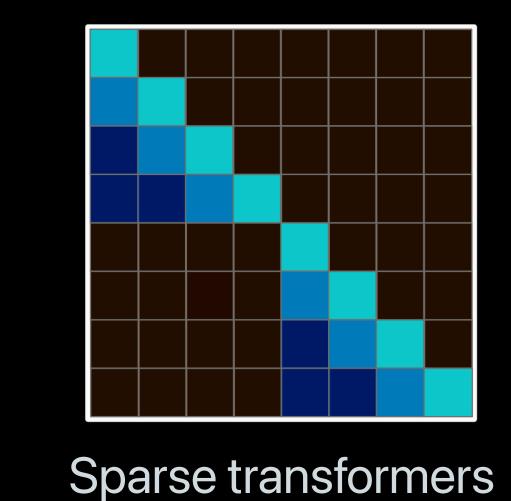
Sparsity comes from data and model design

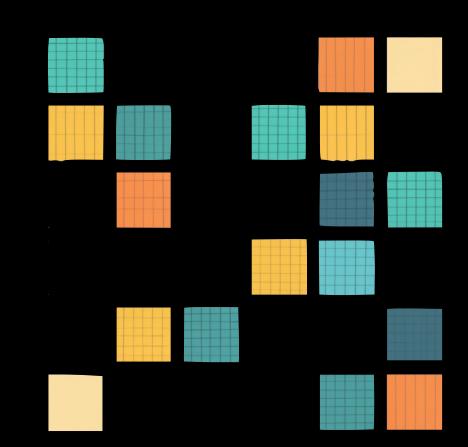




Graph neural networks

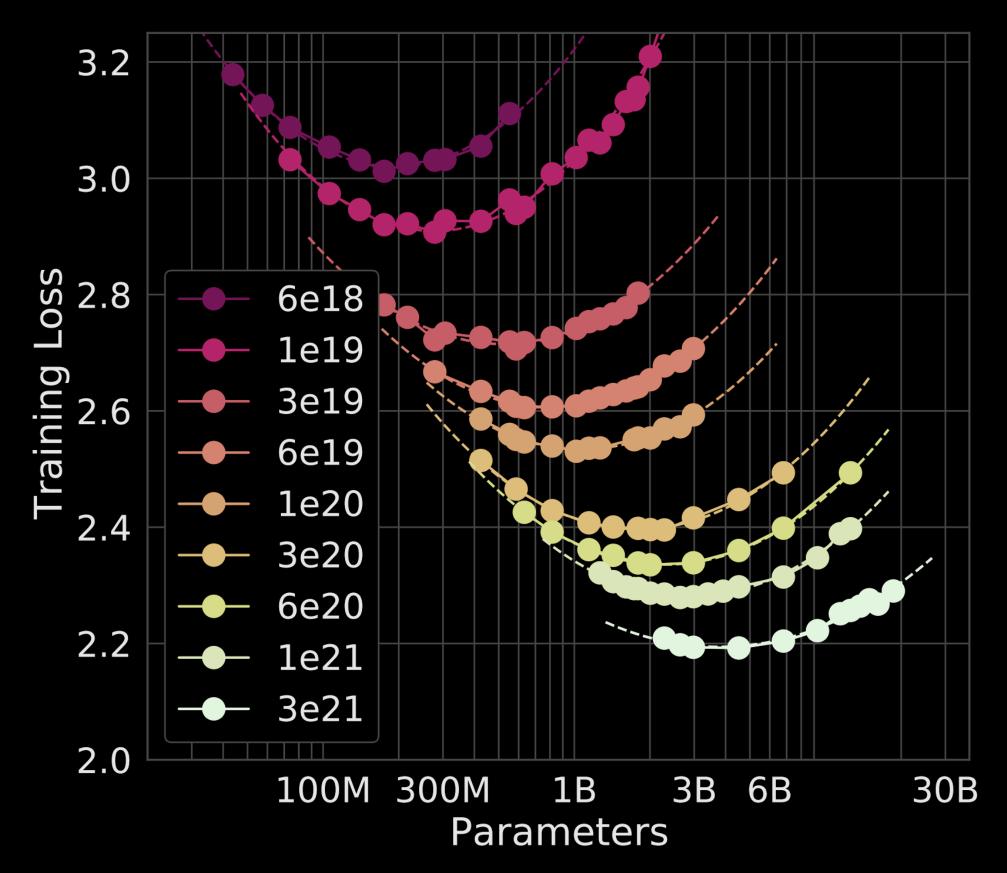
Stanford | Computer Science





Recommender systems

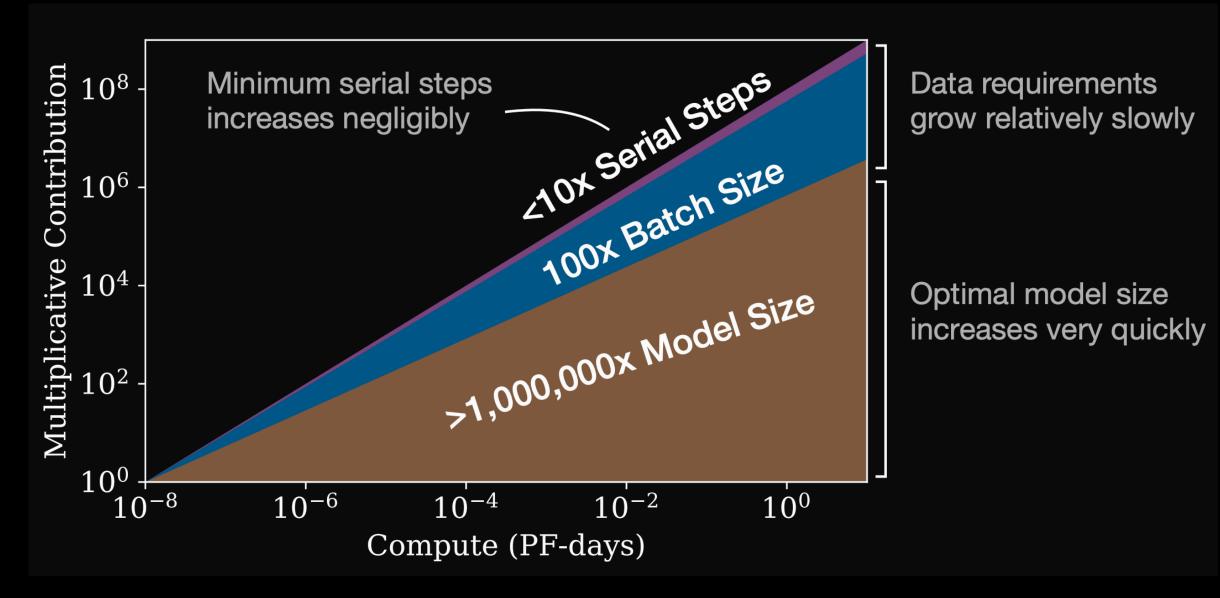
Bigger is better, so we need sparsity



Training Compute-Optimal Large Language Models, 2022

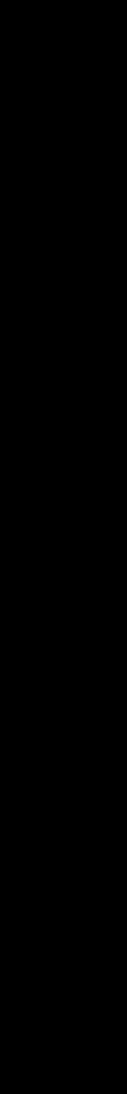
Stanford | Computer Science

Image sources: https://arxiv.org/pdf/2203.15556.pdf, https://arxiv.org/pdf/2001.08361.pdf



Scaling Laws for Neural Language Models, 2020

We should care about Sparse ML.



11

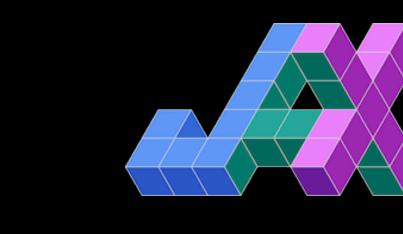
Software for Sparse ML

Software for Dense ML

Dense programming model is unified

Common abstraction Similar APIs Similar feature sets

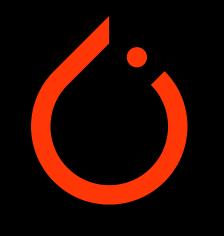
Stanford | Computer Science



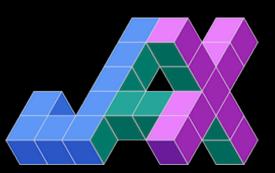
TensorFlow 2

JAX

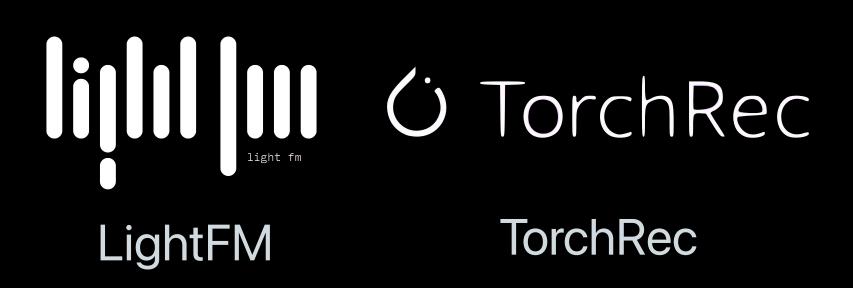
Sparse programming model is fragmented



tf.sparse



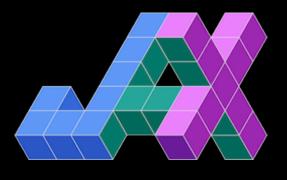
jax.sparse



Stanford | Computer Science

DGL

Sparse programming model is fragmented



torch.sparse

tf.sparse

jax.sparse

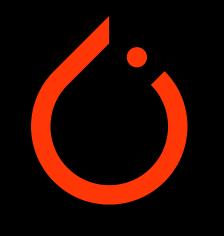
D		\bigcirc
	y	G

Ú TorchRec LightFM TorchRec

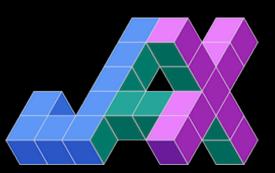
Stanford | Computer Science

Differing abstractions Isolated optimizations Duplicated efforts Barriers to adoptions

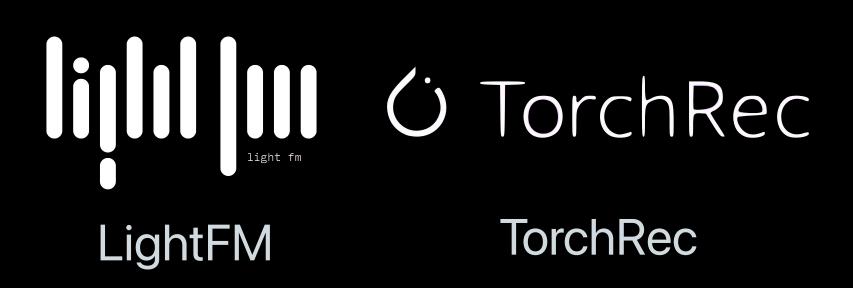
Sparse programming model is fragmented



tf.sparse



jax.sparse



Stanford | Computer Science

DGL

Sparse programming model can be unified

jax.sparse

IIIIII O' Torch Rec TorchRec LightFM

Stanford | Computer Science

DGL

MLIR Sparse

Tensor algebra is all you need.

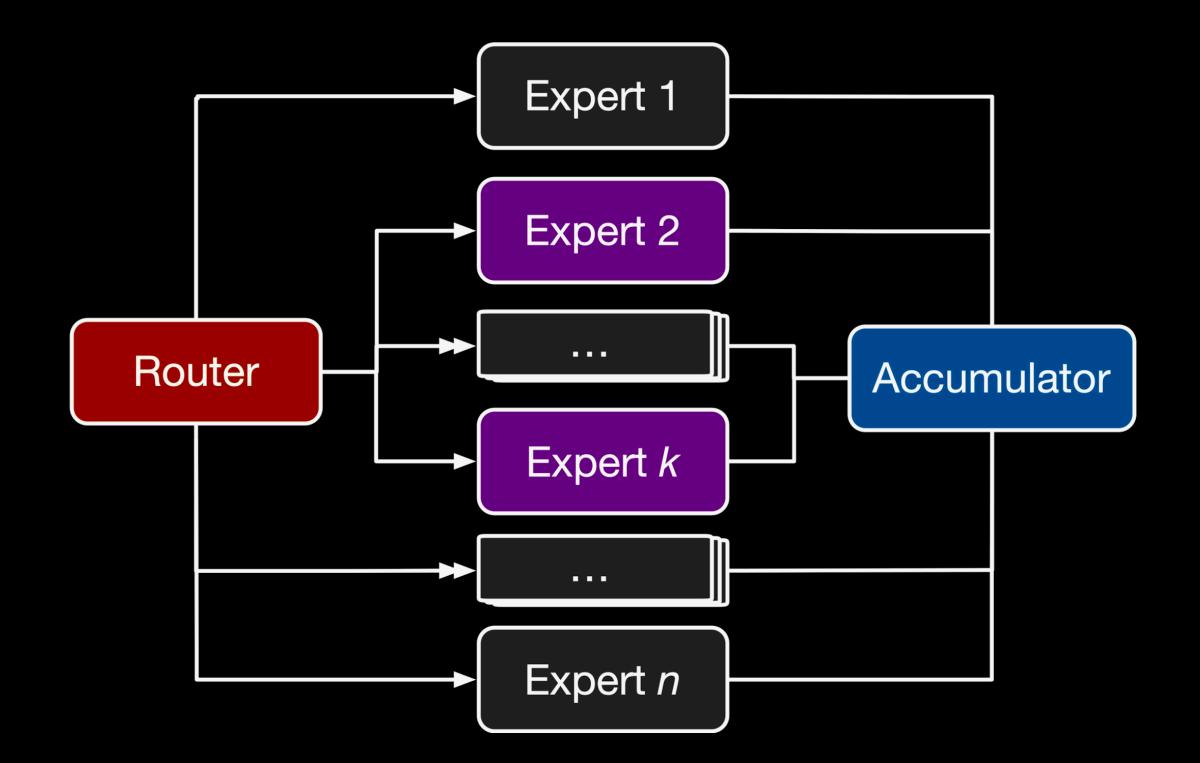
Sparse learning should be easy.

Making it happen

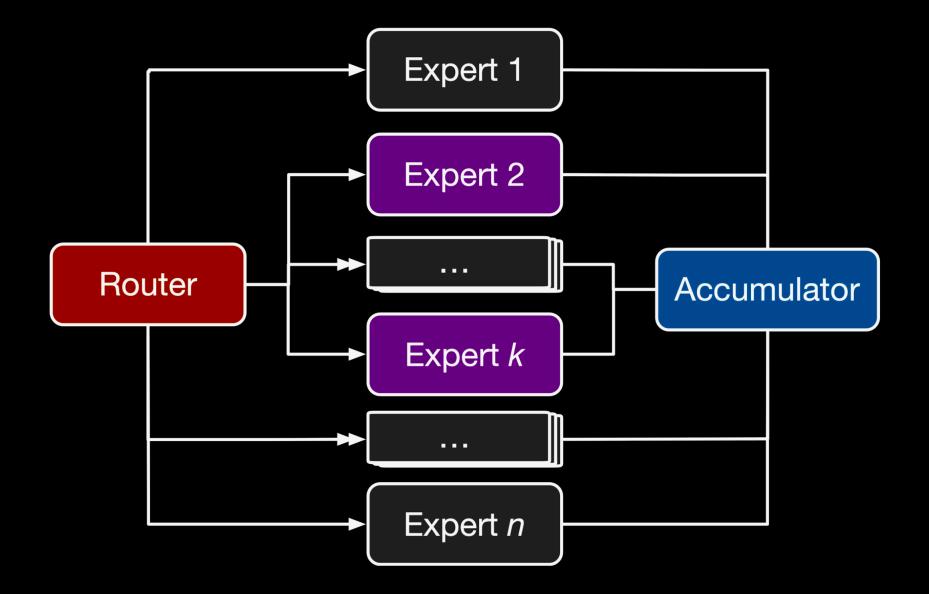
import scorch as torch

Do everything you're doing with dense tensors. Now with sparse tensors, too. Can it be any easier?

Sparse activation with dense weights?



Sparse activation with dense weights?

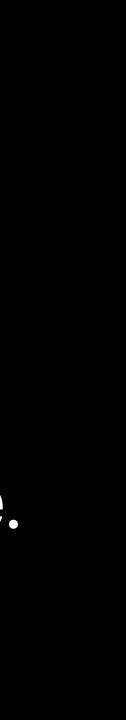


Coarse-grained, high-level structural sparsity in model architecture. Sparse formulation.

Stanford | Computer Science

import scorch *as* torch from scorch.nn import functional as F

Inputs, (B, D_in) $x = torch.randn(B, D_in)$ # Expert embeddings, (N_experts, D_in, D_out) $E = torch.randn(N_experts, D_in, D_out)$ # Sparse gating function, (B, N_experts) gates = torch.rand(B, N_experts) # Select one expert per input gates = F.one_hot(gates.argmax(1), N_experts) # Dispatch inputs to experts, (B, N_experts, D_in) x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts) # Apply experts, (B, N_experts, D_out) y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E) # Combine expert outputs, (B, D_out) y = torch.einsum("bnd,bn->bd", y_experts, gates)



23

Example: Mixture of experts

import torch
from torch.nn import functional as F

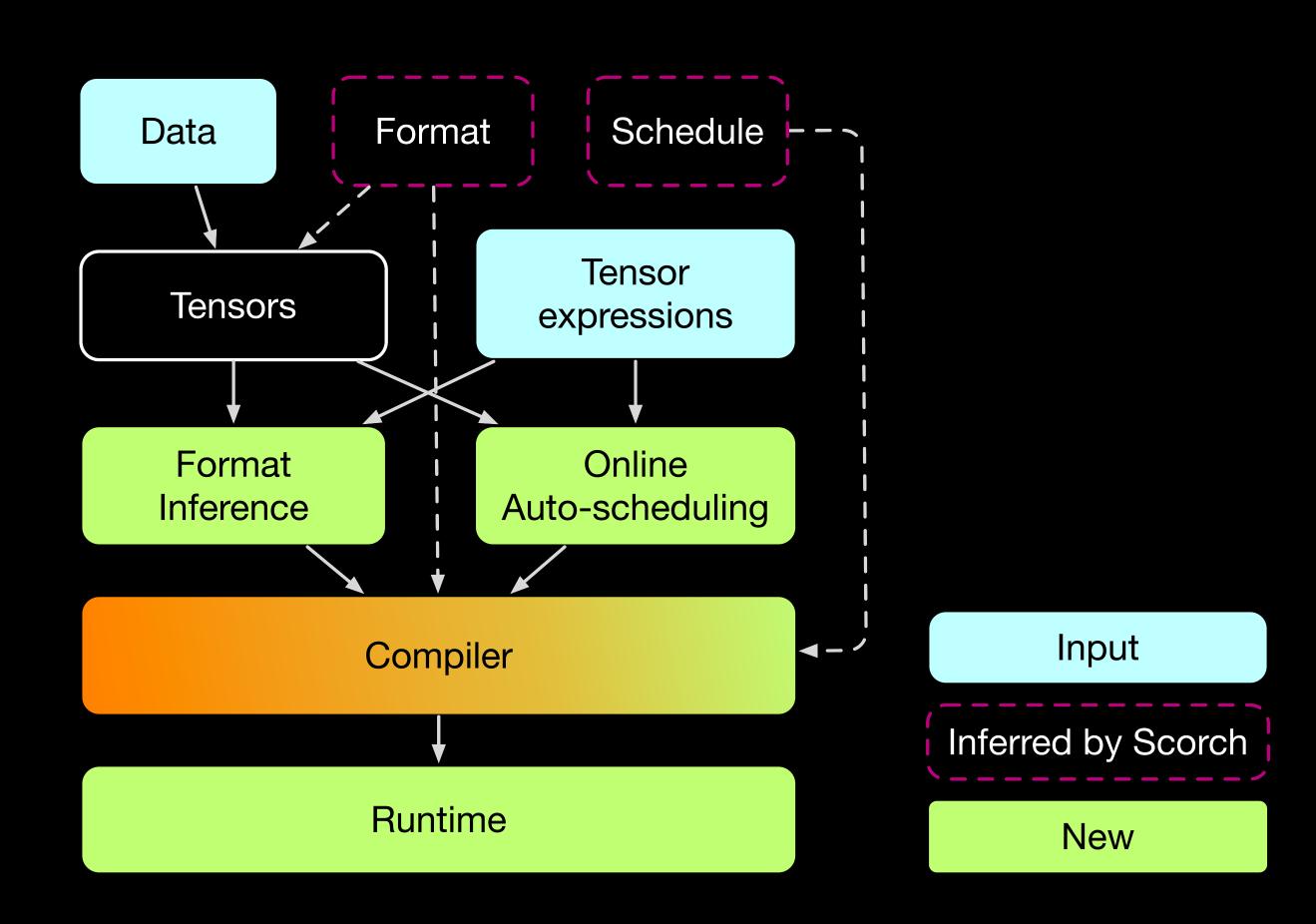
Inputs, (B, D_in) $x = torch.randn(B, D_in)$ # Expert embeddings, (N_experts, D_in, D_out) E = torch.randn(N_experts, D_in, D_out) # Sparse gating function, (B, N_experts) $gates = torch.rand(B, N_experts)$ # Select one expert per input $gates = F.one_hot(gates.argmax(1), N_experts)$ # Dispatch inputs to experts, (B, N_experts, D_in) x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts) # Apply experts, (B, N_experts, D_out) y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E) # Combine expert outputs, (B, D out) y = torch.einsum("bnd,bn->bd", y_experts, gates)

Example: Mixture of experts

import scorch *as* torch from scorch.nn import functional as F

Inputs, (B, D_in) $x = torch.randn(B, D_in)$ # Expert embeddings, (N_experts, D_in, D_out) $E = torch.randn(N_experts, D_in, D_out)$ # Sparse gating function, (B, N_experts) $gates = torch.rand(B, N_experts)$ # Select one expert per input gates = $F.one_hot(gates.argmax(1), N_experts).to_sparse()$ # Dispatch inputs to experts, (B, N_experts, D_in) x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts) # Apply experts, (B, N_experts, D_out) y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E) # Combine expert outputs, (B, D_out) y = torch.einsum("bnd,bn->bd", y_experts, gates)

Overview



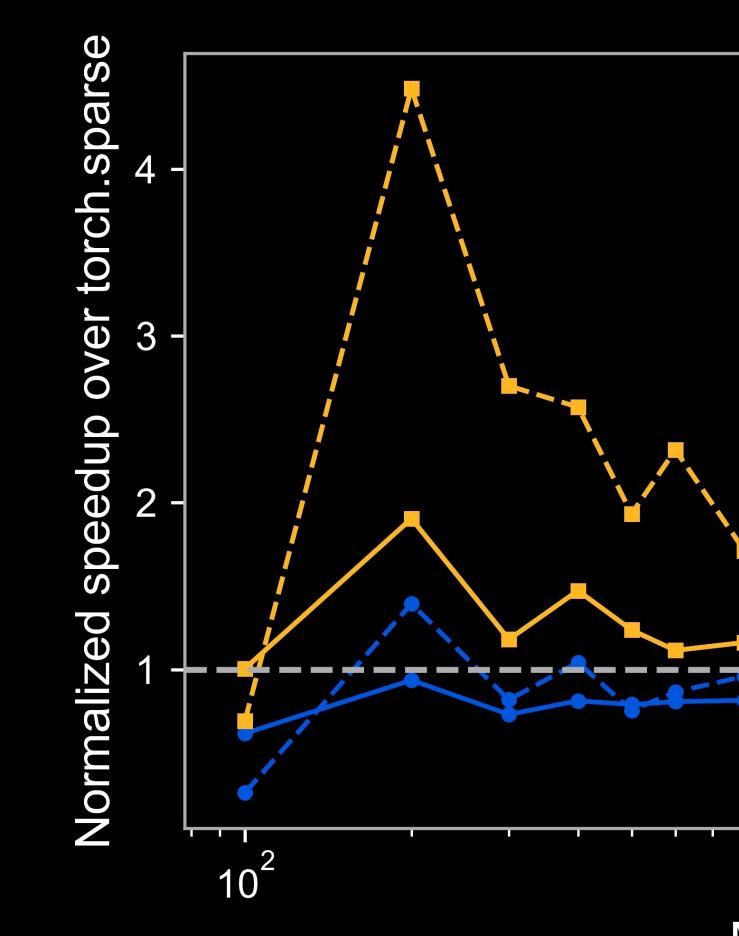
Optimization in Scorch

Format inference Auto-scheduling Multi-dimensional sparse workspaces **Dynamic dispatch**

Compiler architecture

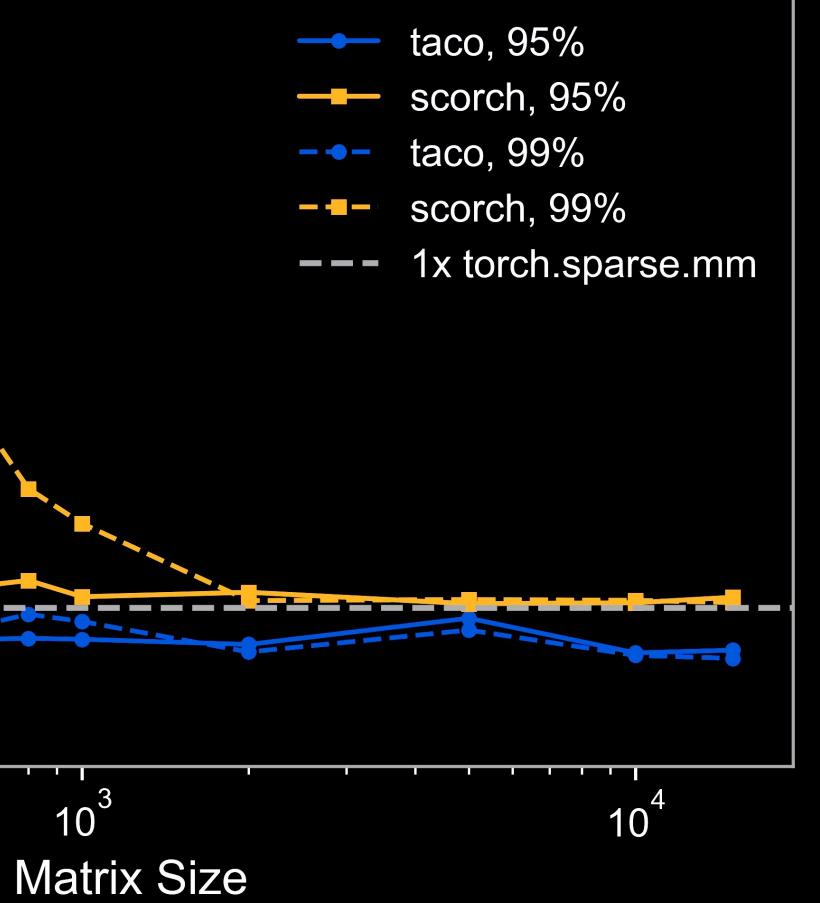
Simplified compilation model over TACO Format abstraction N-dimensional sparse workspaces Data structure selection Code generation

Performance

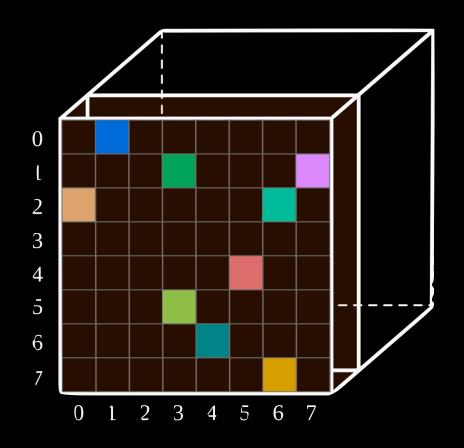


Stanford | Computer Science

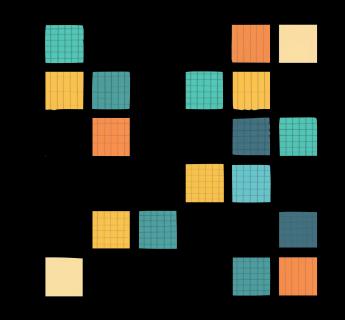
SpMM



End-to-end applications

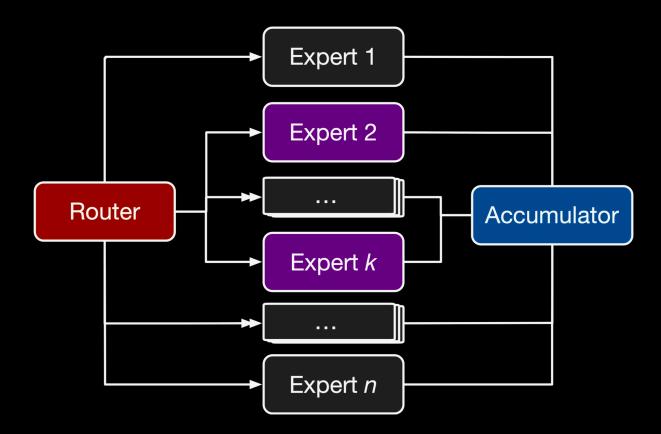


Graph neural networks

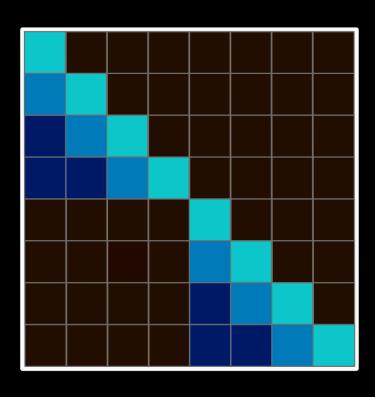


Recommender systems

Stanford | Computer Science



Mixture of experts



Sparse transformers

Ongoing & Future work

Sparse shaping operations Structured sparsity Specialized tensor formats Block formats and tensors Kernel fusion Broader hardware support

