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Sparse machine learning
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Two types of sparsity

Model Sparsity
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Model Sparsity

Weight Sparsity Activation Sparsity Structural Sparsity
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Two types of sparsity

Data SparsityModel Sparsity



Image source: https://icnweb.kr/2021/46155/
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Data Sparsity

Graphs Point clouds Recommender systems



Image source: https://icnweb.kr/2021/46155/
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Data Sparsity

Graphs Point clouds Recommender systems

Bag of words Time series Speech data

Genomic data Transaction data Sensor data
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Sparsity comes from data and model design

Mixture of experts

Graph neural networks

Sparse transformers

Recommender systems



Image sources: https://arxiv.org/pdf/2203.15556.pdf, https://arxiv.org/pdf/2001.08361.pdf
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Bigger is better, so we need sparsity

Scaling Laws for Neural Language Models, 2020

Training Compute-Optimal Large Language Models, 2022



We should care about Sparse ML.
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Software for Sparse ML
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Software for Dense ML
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Sparse programming model is fragmented

14

Common abstraction

PyTorch TensorFlow 2 JAX

Similar APIs

Similar feature sets

Dense programming model is unified



TACO

Sparse programming model can be unified
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Sparse programming model is fragmented

torch.sparse tf.sparse PyG DGLjax.sparse

TorchRecLightFM MLIR Sparse

Scorch



Sparse programming model can be unified
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Sparse programming model is fragmented

torch.sparse tf.sparse

PyG DGL

jax.sparse

TorchRecLightFM

Differing abstractions

Isolated optimizations

Duplicated efforts

Barriers to adoptions



TACO

Sparse programming model can be unified
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Sparse programming model is fragmented

torch.sparse tf.sparse PyG DGLjax.sparse

TorchRecLightFM MLIR Sparse

Scorch



PyG DGL

MLIR Sparse

Scorch

torch.sparse tf.sparse jax.sparse
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Sparse programming model can be unified

TACOTorchRecLightFM

Scorch



Tensor algebra is all you need.
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Sparse learning should be easy.
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Do everything you're doing with dense tensors. 
Now with sparse tensors, too. 
Can it be any easier?
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Making it happen

import scorch as torch
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Sparse activation with dense weights?
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Sparse activation with dense weights?
import scorch as torch 
from scorch.nn import functional as F 

# Inputs, (B, D_in) 
x = torch.randn(B, D_in) 
# Expert embeddings, (N_experts, D_in, D_out) 
E = torch.randn(N_experts, D_in, D_out) 
# Sparse gating function, (B, N_experts) 
gates = torch.rand(B, N_experts) 
# Select one expert per input 
gates = F.one_hot(gates.argmax(1), N_experts) 
# Dispatch inputs to experts, (B, N_experts, D_in) 
x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts) 
# Apply experts, (B, N_experts, D_out) 
y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E) 
# Combine expert outputs, (B, D_out) 
y = torch.einsum("bnd,bn->bd", y_experts, gates)

Coarse-grained, high-level structural sparsity in model architecture.
Sparse formulation.
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Example: Mixture of experts
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Example: Mixture of experts

.to_sparse()
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Overview



Format inference 
Auto-scheduling 
Multi-dimensional sparse workspaces 
Dynamic dispatch 
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Optimization in Scorch



Simplified compilation model over TACO 
Format abstraction 
N-dimensional sparse workspaces 
Data structure selection 
Code generation 
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Compiler architecture
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Performance
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End-to-end applications

Mixture of expertsGraph neural networks

Sparse transformersRecommender systems



Sparse shaping operations 
Structured sparsity 

Specialized tensor formats 
Block formats and tensors 

Kernel fusion 
Broader hardware support
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Ongoing & Future work


