
AHA Retreat 2023 | August 31, 2023

Scorch
A library for Sparse machine learning
Bobby Yan†, Alexander J. Root†, Trevor Gale†‡, Fredrik Kjolstad†
†Stanford University, ‡Google Research

Sparse machine learning

2

3

4

Two types of sparsity

Model Sparsity

5

Model Sparsity

Weight Sparsity Activation Sparsity Structural Sparsity

6

Two types of sparsity

Data SparsityModel Sparsity

Image source: https://icnweb.kr/2021/46155/
7

Data Sparsity

Graphs Point clouds Recommender systems

Image source: https://icnweb.kr/2021/46155/
8

Data Sparsity

Graphs Point clouds Recommender systems

Bag of words Time series Speech data

Genomic data Transaction data Sensor data

9

Sparsity comes from data and model design

Mixture of experts

Graph neural networks

Sparse transformers

Recommender systems

Image sources: https://arxiv.org/pdf/2203.15556.pdf, https://arxiv.org/pdf/2001.08361.pdf
10

Bigger is better, so we need sparsity

Scaling Laws for Neural Language Models, 2020

Training Compute-Optimal Large Language Models, 2022

We should care about Sparse ML.

11

Software for Sparse ML

12

Software for Dense ML

13

Sparse programming model is fragmented

14

Common abstraction

PyTorch TensorFlow 2 JAX

Similar APIs

Similar feature sets

Dense programming model is unified

TACO

Sparse programming model can be unified

15

Sparse programming model is fragmented

torch.sparse tf.sparse PyG DGLjax.sparse

TorchRecLightFM MLIR Sparse

Scorch

Sparse programming model can be unified

16

Sparse programming model is fragmented

torch.sparse tf.sparse

PyG DGL

jax.sparse

TorchRecLightFM

Differing abstractions

Isolated optimizations

Duplicated efforts

Barriers to adoptions

TACO

Sparse programming model can be unified

17

Sparse programming model is fragmented

torch.sparse tf.sparse PyG DGLjax.sparse

TorchRecLightFM MLIR Sparse

Scorch

PyG DGL

MLIR Sparse

Scorch

torch.sparse tf.sparse jax.sparse

18

Sparse programming model can be unified

TACOTorchRecLightFM

Scorch

Tensor algebra is all you need.

19

Sparse learning should be easy.

20

Do everything you're doing with dense tensors.
Now with sparse tensors, too.
Can it be any easier?

21

Making it happen

import scorch as torch

22

Sparse activation with dense weights?

23

Sparse activation with dense weights?
import scorch as torch
from scorch.nn import functional as F

Inputs, (B, D_in)
x = torch.randn(B, D_in)
Expert embeddings, (N_experts, D_in, D_out)
E = torch.randn(N_experts, D_in, D_out)
Sparse gating function, (B, N_experts)
gates = torch.rand(B, N_experts)
Select one expert per input
gates = F.one_hot(gates.argmax(1), N_experts)
Dispatch inputs to experts, (B, N_experts, D_in)
x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts)
Apply experts, (B, N_experts, D_out)
y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E)
Combine expert outputs, (B, D_out)
y = torch.einsum("bnd,bn->bd", y_experts, gates)

Coarse-grained, high-level structural sparsity in model architecture.
Sparse formulation.

import torch
from torch.nn import functional as F

Inputs, (B, D_in)
x = torch.randn(B, D_in)
Expert embeddings, (N_experts, D_in, D_out)
E = torch.randn(N_experts, D_in, D_out)
Sparse gating function, (B, N_experts)
gates = torch.rand(B, N_experts)
Select one expert per input
gates = F.one_hot(gates.argmax(1), N_experts)
Dispatch inputs to experts, (B, N_experts, D_in)
x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts)
Apply experts, (B, N_experts, D_out)
y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E)
Combine expert outputs, (B, D_out)
y = torch.einsum("bnd,bn->bd", y_experts, gates)

24

Example: Mixture of experts

import scorch as torch
from scorch.nn import functional as F

Inputs, (B, D_in)
x = torch.randn(B, D_in)
Expert embeddings, (N_experts, D_in, D_out)
E = torch.randn(N_experts, D_in, D_out)
Sparse gating function, (B, N_experts)
gates = torch.rand(B, N_experts)
Select one expert per input
gates = F.one_hot(gates.argmax(1), N_experts)
Dispatch inputs to experts, (B, N_experts, D_in)
x_dispatch = torch.rearrange(x, "bd->bnd", n=N_experts)
Apply experts, (B, N_experts, D_out)
y_experts = torch_einsum("bnd,ndh->bnh", x_dispatch, E)
Combine expert outputs, (B, D_out)
y = torch.einsum("bnd,bn->bd", y_experts, gates)

25

Example: Mixture of experts

.to_sparse()

26

Overview

Format inference
Auto-scheduling
Multi-dimensional sparse workspaces
Dynamic dispatch

27

Optimization in Scorch

Simplified compilation model over TACO
Format abstraction
N-dimensional sparse workspaces
Data structure selection
Code generation

28

Compiler architecture

29

Performance

30

End-to-end applications

Mixture of expertsGraph neural networks

Sparse transformersRecommender systems

Sparse shaping operations
Structured sparsity

Specialized tensor formats
Block formats and tensors

Kernel fusion
Broader hardware support

31

Ongoing & Future work

