Lightweight Online Learning for Sets of Related
Problems in Automated Reasoning

Haoze (Andrew) Wu Christopher Hahn Florian Lonsing Makai Mann Raghuram Ramanujan Clark Barrett
Stanford Univ. Stanford Univ. Undffiliated MIT Lincoln Lab Davidson College Stanford Univ.

Motivations

e Automated (logical) reasoning
e Become mature technology over the past decades
e Wide applications (e.g., formal verification, theorem proving)
e Often tackle problems NP-hard and beyond
e Scalability is still a concern

e Machine Learning has been successfully applied in diverse domains
* Perception
 Natural language processing

e Automated reasoning?

ML for AR: status quo

Approach 1: Replace solver as a whole (end-to-end approach)
* Limited scalability

Approach 2: Replace internal (e.g., branching) heuristics with a ML model
* Large overhead compared to hand-crafted heuristics

Approach 3: Meta-algorithmic design
* Currently most successful

(Problem distribution P { Collect training data ‘ { Train alg. selector C ‘

N
. Select algorithm
Onhr& { New probleNCompute features F; { a = C(F))

Less automated Not distribution-shift proof

This work: Self-Driven Strategy Learning (SDSL)

 Key observation: many AR tasks involve solving a set S of related problems
* Bounded Model Checking
* [terative abstraction refinement (e.g., CEGAR)
e Counter-example-guided inductive synthesis (CEGIS)
Max-satisfiability
* Possible to narrow the scope of problem distribution down to this set S
 Key idea: Collect data and learn a model on-the-fly

SDSL: a sketch

Given a set of related problems S = {I, I, I, ... } and a space
of solving strategies V = {v,, v4, vy, V3, ... }:

Normal execution:
Check(/,,v,)
Check(/,,v,)
Check(/;,v,)

SDSL: a sketch

Given a set of related problems S = {I, I, I, ... } and a space
of solving strategies V = {v,, v4, vy, V3, ... }:

SDSL execution:
Check(l;,vy) Check(l;,vy) T = fit(D) Check(l;,vy)
Check(/;,v,) Check(l,,v3) v, = argmin,cy T(v) Check(l,, v;)

IL,vo—>a L,vy—oe L,v,—->m ":
I,,v,>b Lyvs—>f IL,ve—-on D’

?4

ML model T

Dataset D: (S,V) — Cost

Wait what about the overhead? Data collection time amortizes in many
practical applications

SDSL: a calculus view

i <K check(fi,v) = UNSAT vs €V j<1i c=cost(fj,vs)
. : (Next) . . : (Collect)
=1+ 10 i,v,D, T =>i,v,DU {{vs,5,¢)}, T
i=K c.heck(fi,v) = UNSAT (Failure) T' = fit(D) R
1, = FAIL i,v,D,T = i,v,D, T
check(fi,v) = SAT VEY 4 =ardant Tlo.. i
N = argmin,, ¢, T'(vs, %)
1,v = SUCCESS (Success) it () (Strategize)

i,v,D, T = i,v',D,T

[1) After every Next, apply(Collect m timesythen appl @ A

2) Apply Strategize whenever T13Updated

3) Override 1) when some legriing budget is exhausteg

k4) Terminate whenever Syetess or Failure applies)
i /

Which strategy to choose? Which representation?

SDSL: Collecting informative data

- If |V] is too small, it might not contain good strategy
- Ifm < |V|, how we sample determines the quality of the dataset
- We need sufficient low-cost strategies in the dataset

- Explicitly bias towards low-cost strategies with MCMC-sampling
(Metropolis-Hastings)

Choose a current strategy v N
Propose to replace v with v', from distribution q(v'|v)

If cost(f,v") < cost(f,v), accept v’ as the current strategy

Else, accept v’ as the current strategy with probability a(v — v')
Go to step 2)

(seens)

Case study: Bounded Model Checking
" Qualcomm

* A widely-used formal verification technique
nvipia. intel

* Find bugs
e Establish formal guarantees

* Check a property P for a transition system over executions bounded by k:

k—1 k' k
bme(K k) :=Io A \ pGii+)A NPAC) —P)
i=0 i=0 i=k/+1

e A Bounded Model Checker solves a set of BMC formulas:

F ={bmc(k—s,k) | k=1i-51<i<K}

Step size

BMC Configurations

e Kissat: BMC (using Kissat as the underlying SAT solver)

e Kissat + SDSL: BMC with self-driven strategy learning
* Rely on expert knowledge to pick the strategy space

Strategy space I:

Bruno Dutertre, “An Empirical Evaluation of SAT Solvers on Bit-vector Problems”, the SMT workshop, 2020

chrono: support for chronological backtracking
decompose: elimination of equivalent literals
eagersubsume: apply subsumption to recently learned clauses
elim: bounded-variable elimination
elimgates: recognize clauses that encode and, xor, and if-then-else
probing: failed-literal probing
rephase: periodically switch preferred variable polarity
stabilize: switch between two heuristic modes
subsumption: clause subsumption
ternary: hyper ternary resolution

vivify: clause vivification
—walks—random—watks——

Figure 2: Tested Features in CaDiCal.. Each feature is enabled by default and enables specific
CaDiCaL procedures. Except for scan-index, all are controlled by command-line options

Strategy space Il:

What options might influence kissat's behaviour the most? #25

© Closed

€&

arminbiere commented on Jun 16, 2022 Owner

Yes: tier1, chrono, stable, walkinitially, target, phase is a good set. In essence | went over the code and tried to remove
actual code and also options. What is left in 'sc2022-light’ either had some influence on certain benchmarks or is important
for testing and (delta-)debugging (such as all those '--...init=' options). For instance, for hardware miters playing with the '--
sweep...' options can give you large benefits (which are problematic for other benchmarks though and not the best you can
do for miters anyhow). So this set is pretty close to a robust setting for SAT competition alike benchmarks.

@

12

Unrolling the unsolved benchmarks

* Unsolved benchmarks from Hardware Model Checking Competition

* Each job is given 2 hours CPU time, one physical core, and 8 GB memory

Unrolling the unsolved benchmarks: example

shift_register top w32 d128 e0
,0?7000
<6000 — Kissat F)
E 5000 -----—- Kissat + SDSL |/ Runtime
o 4000 reduction
% 3000
g 2000

-
3 1000
0

5 10 15 20 25 30 35 40
Solved Bound

14

Unrolling the unsolved benchmarks: more examples

shift register top w32 d128 e zipversa composecrc prf-p03
7000 / 7000 S,
% 6000 —— Kissat b /,' % 6000 —— Kissat : S
E 5000 - Kissat + SDSL : / E 5000 ------ Kissat + SDSL : %
© 4000 : © 4000 :
Z 3000 Z 3000
E 2000 E 2000
3 1000 : 3 1008 :

5 10 15 20 25 30 35 40 10 20 30 40 50 60 70 80
Solved Bound Solved Bound
picorv32-pcregs-p0 arbitrated top n3 w16 d128 eO
7000 _ 7000 ;
5 6000 —— Kissat — 56000 —— Kissat =
E5000 Kissat + SDSL 2/ 5000 Kissat + SDSL Z
© 4000 © 4000 :
Z 3000 £ 3000
E 2000 E 2000
3 1008 _ 3 1008 :
10 15 20 25 30 10 20 30 40 50 60
Solved Bound Solved Bound

SDSL certifies larger bounds in > 90% of the cases

Unrolling the unsolved benchmarks

Metrics:

 Bound: largest solved bound within 2 hours

Time: time (in seconds) to reach the largest commonly solved bound

Step size
1
10

KISSAT + SDSL KISSAT PONO

Time Bound Time Bound Bound
4811 52.6 6354 48.7 43.1
2927 57.5 3712 554 554

Comparison against SOTA Model Checkers

* 89 unknown and satisfiable competition benchmarks
* Additional baselines:
* AVR Portfolio: 16 threads, winner of HWMCC’2020
* Pono Portfolio: 13 threads, winner of HWMCC’2019
* Each thread is given 1 hour CPU time and 8 GB memory

Config. Threads Slv. Time Unique
KISSAT + SDSL 1 68 27362 7
KISSAT 1 61 6358 0
AVR PORTFOLIO 16 48 12113 2
PONO PORTFOLIO 13 63 10723 0
VIRTUAL BEST 31 72 24700 —

SDSL solves 7 unsolved problems during the competition

Ssummary

» Self-Driven Strategy Learning:

A general online Learning methodology potentially applicable to
many automated reasoning tasks

e (Case study on BMC on hardware designs
e Consistent improvement over state-of-the-art on satisfiable instances

* Bigger picture:
* Let ML make high-level decisions, let AR work out the details

Paper: https://arxiv.org/abs/2305.11087

https://arxiv.org/abs/2305.11087

