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Motivations
• Automated (logical) reasoning 

• Become mature technology over the past decades
• Wide applications (e.g., formal verification, theorem proving)
• Often tackle problems NP-hard and beyond
• Scalability is still a concern

• Machine Learning has been successfully applied in diverse domains
• Perception
• Natural language processing
• …
• Automated reasoning?
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ML for AR: status quo

3

Approach 1: Replace solver as a whole (end-to-end approach)
• Limited scalability

Approach 2: Replace internal (e.g., branching) heuristics with a ML model
• Large overhead compared to hand-crafted heuristics

Approach 3: Meta-algorithmic design
• Currently most successful

Problem distribution Collect training data Train alg. selector 𝐶 Offline: 

New problem 𝐼 Compute features 𝐹! 
Select algorithm  
𝑎 ≔ 𝐶(𝐹!) Online: 

Not distribution-shift proofLess automated



This work: Self-Driven Strategy Learning (SDSL)

• Key observation: many AR tasks involve solving a set 𝑺 of related problems
• Bounded Model Checking
• Iterative abstraction refinement (e.g., CEGAR)
• Counter-example-guided inductive synthesis (CEGIS)
• Max-satisfiability
• …

• Possible to narrow the scope of problem distribution down to this set 𝑺
• Key idea: Collect data and learn a model on-the-fly
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Given a set of related problems	 𝑆 ≔ 𝐼( , 𝐼) , 𝐼* , …	 and a space 
of solving strategies 𝑉 ≔ {𝑣+ , 𝑣( , 𝑣) , 𝑣* , … }:

𝐂𝐡𝐞𝐜𝐤(𝐼!, 𝑣")
𝐂𝐡𝐞𝐜𝐤(𝐼#, 𝑣")
𝐂𝐡𝐞𝐜𝐤(𝐼$, 𝑣") 

…

Normal execution:

SDSL: a sketch
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SDSL: a sketch

Given a set of related problems	 𝑆 ≔ 𝐼( , 𝐼) , 𝐼* , …	 and a space 
of solving strategies 𝑉 ≔ {𝑣+ , 𝑣( , 𝑣) , 𝑣* , … }:
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𝐂𝐡𝐞𝐜𝐤(𝐼!, 𝑣")
𝐂𝐡𝐞𝐜𝐤(𝐼!, 𝑣#)	

…

SDSL execution:
𝑇 = 𝐟𝐢𝐭(𝐷)
𝑣% = arg	min&∈( 	𝑇(𝑣)

𝐂𝐡𝐞𝐜𝐤(𝐼$, 𝑣%)
𝐂𝐡𝐞𝐜𝐤(𝐼), 𝑣%)	

…

ML model 𝑇
Dataset 𝐷: 𝑆, 𝑉 → 𝐶𝑜𝑠𝑡

𝐼!, 𝑣" → 𝑒
𝐼!, 𝑣# → 𝑓

…

𝐼#, 𝑣$ → 𝑚
𝐼%, 𝑣$ → 𝑛				

…
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𝐂𝐡𝐞𝐜𝐤(𝐼#, 𝑣")
𝐂𝐡𝐞𝐜𝐤(I#, 𝑣$)	

…

𝐼&, 𝑣" → 𝑎	
𝐼&, 𝑣! → 𝑏

…

Wait, what about the overhead? Data collection time amortizes in many 
practical applications



SDSL: a calculus view

1) After every Next, apply Collect m times, then apply Train
2) Apply Strategize whenever i is updated
3) Override 1) when some learning budget is exhausted
4) Terminate whenever Success or Failure applies.

7Which strategy to choose? Which representation?



SDSL: Collecting informative data
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- If |𝑉| is too small, it might not contain good strategy
- If m ≪ |𝑉|, how we sample determines the quality of the dataset 

- We need sufficient low-cost strategies in the dataset
- Explicitly bias towards low-cost strategies with MCMC-sampling 

(Metropolis-Hastings)

1)  Choose a current strategy 𝑣
2)  Propose to replace 𝑣	with 𝑣′, from distribution q(𝑣'|𝑣)
3)  If 𝑐𝑜𝑠𝑡 𝑓, 𝑣' ≤ 𝑐𝑜𝑠𝑡(𝑓, 𝑣), accept 𝑣' as the current strategy
4)  Else, accept 𝑣' as the current strategy with probability a(𝑣 → 𝑣')
5)  Go to step 2



Case study: Bounded Model Checking
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• A widely-used formal verification technique
• Find bugs
• Establish formal guarantees

• Check a property 𝑃 for a transition system over executions bounded by 𝑘:

• A Bounded Model Checker solves a set of BMC formulas:

Step size



BMC Configurations
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• Kissat: BMC (using Kissat as the underlying SAT solver)

• Kissat + SDSL: BMC with self-driven strategy learning
• Rely on expert knowledge to pick the strategy space



Strategy space I: 
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Bruno Dutertre, “An Empirical Evaluation of SAT Solvers on Bit-vector Problems”, the SMT workshop, 2020



Strategy space II: 
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Unrolling the unsolved benchmarks
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• Unsolved benchmarks from Hardware Model Checking Competition

• Each job is given 2 hours CPU time, one physical core, and 8 GB memory



Unrolling the unsolved benchmarks: example
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shift_register_top_w32_d128_e0

Runtime 
reduction



SDSL certifies larger bounds in > 90% of the cases

Unrolling the unsolved benchmarks: more examples
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arbitrated_top_n3_w16_d128_e0picorv32-pcregs-p0

shift_register_top_w32_d128_e
0

zipversa_composecrc_prf-p03
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Unrolling the unsolved benchmarks
Metrics:
• Bound: largest solved bound within 2 hours
• Time: time (in seconds) to reach the largest commonly solved bound



SDSL solves 7 unsolved problems during the competition 17

Comparison against SoTA Model Checkers
• 89 unknown and satisfiable competition benchmarks
• Additional baselines:

• AVR Portfolio: 16 threads, winner of HWMCC’2020
• Pono Portfolio: 13 threads, winner of HWMCC’2019

• Each thread is given 1 hour CPU time and 8 GB memory



18

Summary

Paper: https://arxiv.org/abs/2305.11087 

• Self-Driven Strategy Learning:
• A general online Learning methodology potentially applicable to 

many automated reasoning tasks

• Case study on BMC on hardware designs
• Consistent improvement over state-of-the-art on satisfiable instances

• Bigger picture:
• Let ML make high-level decisions, let AR work out the details

https://arxiv.org/abs/2305.11087

