Lightweight Online Learning for Sets of Related **Problems in Automated Reasoning**

Haoze (Andrew) Wu Stanford Univ.

Christopher Hahn Stanford Univ.

Florian Lonsing Unaffiliated

Raghuram Ramanujan

Clark Barrett Stanford Univ.

Motivations

- Automated (logical) reasoning
 - Become mature technology over the past decades
 - Wide applications (e.g., formal verification, theorem proving)
 - Often tackle problems NP-hard and beyond
 - Scalability is still a concern
- Machine Learning has been successfully applied in diverse domains
 - Perception
 - Natural language processing
 - ...
 - Automated reasoning?

ML for AR: status quo

Approach 1: Replace solver as a whole (end-to-end approach)

• Limited scalability

Approach 2: Replace internal (e.g., branching) heuristics with a ML model

Large overhead compared to hand-crafted heuristics

Approach 3: Meta-algorithmic design

Currently most successful

This work: Self-Driven Strategy Learning (SDSL)

- **Key observation:** many AR tasks involve solving a set **S** of related problems
 - Bounded Model Checking
 - Iterative abstraction refinement (e.g., CEGAR)
 - Counter-example-guided inductive synthesis (CEGIS)
 - Max-satisfiability
 - ...
- Possible to narrow the scope of problem distribution down to this set **S**
- Key idea: Collect data and learn a model *on-the-fly*

SDSL: a sketch

Given a set of related problems $S \coloneqq \{I_1, I_2, I_3, ...\}$ and a space of solving strategies $V \coloneqq \{v_0, v_1, v_2, v_3, ...\}$:

Normal execution:

Check (I_1, v_0) Check (I_2, v_0) Check (I_3, v_0)

• • •

SDSL: a sketch

Given a set of related problems $S \coloneqq \{I_1, I_2, I_3, ...\}$ and a space of solving strategies $V \coloneqq \{v_0, v_1, v_2, v_3, ...\}$:

SDSL execution:

Wait, what about the overhead?

Data collection time **amortizes** in many practical applications

SDSL: a calculus view

$$\frac{i < \mathbf{K} \quad \operatorname{check}(f_i, v) = \operatorname{UNSAT}}{i, v \Longrightarrow i + 1, v} \quad (\operatorname{Next}) \qquad \qquad \frac{v_s \in \mathcal{V} \quad j \le i \quad c = \operatorname{cost}(f_j, v_s)}{i, v, D, T \Longrightarrow i, v, D \cup \{\langle v_s, j, c \rangle\}, T} \quad (\operatorname{Collect}) \\ \frac{i = \mathbf{K} \quad \operatorname{check}(f_i, v) = \operatorname{UNSAT}}{i, v \Longrightarrow \operatorname{FAIL}} \quad (\operatorname{Failure}) \qquad \qquad \frac{T' = \operatorname{fit}(D)}{i, v, D, T \Longrightarrow i, v, D, T'} \quad (\operatorname{Train}) \\ \frac{\operatorname{check}(f_i, v) = \operatorname{SAT}}{i, v \Longrightarrow \operatorname{SUCCESS}} \quad (\operatorname{Success}) \qquad \qquad \frac{\mathcal{V}_s \subseteq \mathcal{V} \quad v' = \arg\min_{v_s \in \mathcal{V}_s} T(v_s, i)}{i, v, D, T \Longrightarrow i, v', D, T} \quad (\operatorname{Strategize})$$

SDSL: Collecting informative data

- If |V| is too small, it might not contain good strategy
- If $m \ll |V|$, how we sample determines the quality of the dataset
 - We need sufficient low-cost strategies in the dataset
 - Explicitly bias towards low-cost strategies with MCMC-sampling (Metropolis-Hastings)
 - 1) Choose a current strategy v
 - 2) Propose to replace v with v', from distribution q(v'|v)
 - 3) If $cost(f, v') \le cost(f, v)$, accept v' as the current strategy
 - 4) Else, accept v' as the current strategy with probability $a(v \rightarrow v')$
 - 5) Go to step 2

Case study: Bounded Model Checking

- A widely-used formal verification technique
 - Find bugs
 - Establish formal guarantees
- Check a property *P* for a transition system over executions bounded by *k*:

$$bmc(k',k) := I_0 \wedge \bigwedge_{i=0}^{k-1} \rho(i,i+1) \wedge \bigwedge_{i=0}^{k'} P_i \wedge (\bigvee_{i=k'+1}^k \neg P_i)$$

• A Bounded Model Checker solves a set of BMC formulas:

$$\mathcal{F} = \{ bmc(k - s, k) \mid k = i \cdot s, 1 \le i \le \mathbf{K} \}$$

$$\mathbf{\hat{K}}$$
Step size

9

BMC Configurations

- **Kissat**: BMC (using Kissat as the underlying SAT solver)
- **Kissat + SDSL**: BMC with self-driven strategy learning
 - Rely on expert knowledge to pick the strategy space

Strategy space I:

Bruno Dutertre, "An Empirical Evaluation of SAT Solvers on Bit-vector Problems", the SMT workshop, 2020

<i>_compacting:_</i>	<u>compacting internal variables</u>				
chrono:	support for chronological backtracking				
decompose:	elimination of equivalent literals				
eagersubsume:	apply subsumption to recently learned clauses				
elim:	bounded-variable elimination				
elimgates:	recognize clauses that encode and, xor, and if-then-else				
lucky:-	try predefined satisfying assignments				
probing:	failed-literal probing				
rephase:	periodically switch preferred variable polarity				
<u>sean-index:</u>	optimized watched literal search				
stabilize:	switch between two heuristic modes				
subsumption:	clause subsumption				
ternary:	hyper ternary resolution				
vivify:	clause vivification				
walk:	random walks				

Figure 2: Tested Features in CaDiCaL. Each feature is enabled by default and enables specific CaDiCaL procedures. Except for *scan-index*, all are controlled by command-line options

Strategy space II:

What options might influence kissat's behaviour the most? #25

⊘ Closed

 \odot

arminbiere commented on Jun 16, 2022

Owner ····

12

Yes: tier1, chrono, stable, walkinitially, target, phase is a good set. In essence I went over the code and tried to remove actual code and also options. What is left in 'sc2022-light' either had some influence on certain benchmarks or is important for testing and (delta-)debugging (such as all those '--...init=' options). For instance, for hardware miters playing with the '-- sweep...' options can give you large benefits (which are problematic for other benchmarks though and not the best you can do for miters anyhow). So this set is pretty close to a robust setting for SAT competition alike benchmarks.

Unrolling the unsolved benchmarks

- Unsolved benchmarks from Hardware Model Checking Competition
- Each job is given 2 hours CPU time, one physical core, and 8 GB memory

Unrolling the unsolved benchmarks: example

Unrolling the unsolved benchmarks: more examples

SDSL certifies larger bounds in > 90% of the cases

15

Unrolling the unsolved benchmarks

Metrics:

- **Bound**: largest solved bound within 2 hours
- **Time**: time (in seconds) to reach the largest commonly solved bound

	KISSAT + SDSL		KISSAT		PONO
Step size		Bound	Time	Bound	Bound
1	4811	52.6	6354	48.7	43.1
10	2927	57.5	3712	55.4	55.4

Comparison against SoTA Model Checkers

- 89 unknown and satisfiable competition benchmarks
- Additional baselines:
 - AVR Portfolio: 16 threads, winner of HWMCC'2020
 - Pono Portfolio: 13 threads, winner of HWMCC'2019
- Each thread is given 1 hour CPU time and 8 GB memory

Config.	Threads	Slv.	Time	Unique
KISSAT + SDSL	1	68	27362	7
KISSAT	1	61	6358	0
AVR PORTFOLIO	16	48	12113	2
PONO PORTFOLIO	13	63	10723	0
VIRTUAL BEST	31	72	24700	_

SDSL solves 7 **unsolved** problems during the competition

Summary

- Self-Driven Strategy Learning:
 - A general online Learning methodology potentially applicable to many automated reasoning tasks
- Case study on BMC on hardware designs
 - Consistent improvement over state-of-the-art on satisfiable instances
- Bigger picture:
 - Let ML make high-level decisions, let AR work out the details

Paper: https://arxiv.org/abs/2305.11087

