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Motivations

e Automated (logical) reasoning
e Become mature technology over the past decades
e Wide applications (e.g., formal verification, theorem proving)
e Often tackle problems NP-hard and beyond
e  Scalability is still a concern

e Machine Learning has been successfully applied in diverse domains
* Perception
 Natural language processing

e Automated reasoning?



ML for AR: status quo

Approach 1: Replace solver as a whole (end-to-end approach)
* Limited scalability

Approach 2: Replace internal (e.g., branching) heuristics with a ML model
* Large overhead compared to hand-crafted heuristics

Approach 3: Meta-algorithmic design
* Currently most successful

( Problem distribution P { Collect training data ‘ { Train alg. selector C ‘

N
. Select algorithm
Onhr& { New probleNCompute features F; { a = C(F))

Less automated Not distribution-shift proof



This work: Self-Driven Strategy Learning (SDSL)

 Key observation: many AR tasks involve solving a set S of related problems
* Bounded Model Checking
* [terative abstraction refinement (e.g., CEGAR)
e Counter-example-guided inductive synthesis (CEGIS)
Max-satisfiability
* Possible to narrow the scope of problem distribution down to this set S
 Key idea: Collect data and learn a model on-the-fly



SDSL: a sketch

Given a set of related problems S = {I, I, I, ... } and a space
of solving strategies V = {v,, v4, vy, V3, ... }:

Normal execution:
Check(/,,v,)
Check(/,,v,)
Check(/;,v,)



SDSL: a sketch

Given a set of related problems S = {I, I, I, ... } and a space
of solving strategies V = {v,, v4, vy, V3, ... }:

SDSL execution:
Check(l;,vy) Check(l;,vy) T = fit(D) Check(l;,vy)
Check(/;,v,) Check(l,,v3) v, = argmin,cy T(v)  Check(l,, v;)

IL,vo—>a L,vy—oe L,v,—->m ":
I,,v,>b Lyvs—>f IL,ve—-on D’

?4

ML model T

Dataset D: (S,V) — Cost

Wait what about the overhead? Data collection time amortizes in many
practical applications



SDSL: a calculus view

i <K check(fi,v) = UNSAT vs €V j<1i c=cost(fj,vs)
. : (Next) . . : (Collect)
=1+ 10 i,v,D, T =>i,v,DU {{vs,5,¢)}, T
i=K c.heck( fi,v) = UNSAT (Failure) T' = fit(D) R
1, = FAIL i,v,D,T = i,v,D, T
check(fi,v) = SAT VEY 4 =ardant Tlo.. i
N = argmin,, ¢, T'(vs, % )
1,v = SUCCESS (Success) it ( ) (Strategize)

i,v,D, T = i,v',D,T

[1) After every Next, apply(Collect m timesythen appl @ A

2) Apply Strategize whenever T13Updated

3) Override 1) when some legriing budget is exhausteg

k4) Terminate whenever Syetess or Failure applies )
i /

Which strategy to choose? Which representation?




SDSL: Collecting informative data

- If |V] is too small, it might not contain good strategy
- Ifm < |V|, how we sample determines the quality of the dataset
-  We need sufficient low-cost strategies in the dataset

- Explicitly bias towards low-cost strategies with MCMC-sampling
(Metropolis-Hastings)

Choose a current strategy v N
Propose to replace v with v', from distribution q(v'|v)

If cost(f,v") < cost(f,v), accept v’ as the current strategy

Else, accept v’ as the current strategy with probability a(v — v')
Go to step 2 )

(seens)




Case study: Bounded Model Checking
" Qualcomm

* A widely-used formal verification technique
nvipia.  intel

* Find bugs
e Establish formal guarantees

* Check a property P for a transition system over executions bounded by k:

k—1 k' k
bme(K k) :=Io A \ pGii+ )A NPAC ) —P)
i=0 i=0 i=k/+1

e A Bounded Model Checker solves a set of BMC formulas:

F ={bmc(k—s,k) | k=1i-51<i<K}

Step size



BMC Configurations

e Kissat: BMC (using Kissat as the underlying SAT solver)

e Kissat + SDSL: BMC with self-driven strategy learning
* Rely on expert knowledge to pick the strategy space



Strategy space I:

Bruno Dutertre, “An Empirical Evaluation of SAT Solvers on Bit-vector Problems”, the SMT workshop, 2020

chrono:  support for chronological backtracking
decompose:  elimination of equivalent literals
eagersubsume:  apply subsumption to recently learned clauses
elim: bounded-variable elimination
elimgates:  recognize clauses that encode and, xor, and if-then-else
probing:  failed-literal probing
rephase:  periodically switch preferred variable polarity
stabilize:  switch between two heuristic modes
subsumption: clause subsumption
ternary: hyper ternary resolution

vivify:  clause vivification
—walks—random—watks——

Figure 2: Tested Features in CaDiCal.. Each feature is enabled by default and enables specific
CaDiCaL procedures. Except for scan-index, all are controlled by command-line options



Strategy space Il:

What options might influence kissat's behaviour the most? #25

© Closed

€&

arminbiere commented on Jun 16, 2022 Owner

Yes: tier1, chrono, stable, walkinitially, target, phase is a good set. In essence | went over the code and tried to remove
actual code and also options. What is left in 'sc2022-light’ either had some influence on certain benchmarks or is important
for testing and (delta-)debugging (such as all those '--...init=' options). For instance, for hardware miters playing with the '--
sweep...' options can give you large benefits (which are problematic for other benchmarks though and not the best you can
do for miters anyhow). So this set is pretty close to a robust setting for SAT competition alike benchmarks.

@
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Unrolling the unsolved benchmarks

* Unsolved benchmarks from Hardware Model Checking Competition

* Each job is given 2 hours CPU time, one physical core, and 8 GB memory



Unrolling the unsolved benchmarks: example

shift_register top w32 d128 e0
,0?7000
<6000 — Kissat F )
E 5000 -----—- Kissat + SDSL |/ Runtime
o 4000 reduction
% 3000
g 2000

-
3 1000
0

5 10 15 20 25 30 35 40
Solved Bound
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Unrolling the unsolved benchmarks: more examples

shift register top w32 d128 e zipversa composecrc prf-p03
7000 / 7000 S,
% 6000 —— Kissat b /,' % 6000 —— Kissat : S
E 5000 - Kissat + SDSL : / E 5000  ------ Kissat + SDSL : %
© 4000 : © 4000 :
Z 3000 Z 3000
E 2000 E 2000
3 1000 : 3 1008 :

5 10 15 20 25 30 35 40 10 20 30 40 50 60 70 80
Solved Bound Solved Bound
picorv32-pcregs-p0 arbitrated top n3 w16 d128 eO
7000 _ 7000 ;
5 6000 —— Kissat — 56000 —— Kissat =
E5000 Kissat + SDSL 2/ 5000 Kissat + SDSL Z
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SDSL certifies larger bounds in > 90% of the cases




Unrolling the unsolved benchmarks

Metrics:

 Bound: largest solved bound within 2 hours

Time: time (in seconds) to reach the largest commonly solved bound

Step size
1
10

KISSAT + SDSL KISSAT PONO

Time Bound Time Bound Bound
4811 52.6 6354 48.7 43.1
2927 57.5 3712 554 554




Comparison against SOTA Model Checkers

* 89 unknown and satisfiable competition benchmarks
* Additional baselines:
* AVR Portfolio: 16 threads, winner of HWMCC’2020
* Pono Portfolio: 13 threads, winner of HWMCC’2019
* Each thread is given 1 hour CPU time and 8 GB memory

Config. Threads Slv. Time Unique
KISSAT + SDSL 1 68 27362 7
KISSAT 1 61 6358 0
AVR PORTFOLIO 16 48 12113 2
PONO PORTFOLIO 13 63 10723 0
VIRTUAL BEST 31 72 24700 —

SDSL solves 7 unsolved problems during the competition




Ssummary

» Self-Driven Strategy Learning:

A general online Learning methodology potentially applicable to
many automated reasoning tasks

e (Case study on BMC on hardware designs
e Consistent improvement over state-of-the-art on satisfiable instances

* Bigger picture:
* Let ML make high-level decisions, let AR work out the details

Paper: https://arxiv.org/abs/2305.11087
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