
Automatic Pipelining for CGRA
Applications

Techniques, Analysis, and Future Directions

Jack Melchert

Motivation

Problem: The applications running on our CGRA run at very low
frequencies

Gaussian Blur 103 MHz
Harris Corner Detection 26 MHz

Camera Pipeline 17 Mhz

The maximum frequency of the CGRA is 780 MHz at 1.1 V

Motivation

Solution: Pipeline applications

● Un-pipelined applications have critical paths that typically start or
end at a memory tile or outside of the array

● Adding pipelining registers to these paths should dramatically
increase the maximum frequency of the applications

Goals

● Understand and model the delays in the array
● Measure all contributions to the critical path
● Integrate that data into a timing analysis tool that will accurately model

the critical path in an application
● Create an automated pipelining approach

● Our applications and hardware change frequently, so an automated
approach is required

Terminology

Terminology

Compute Kernel

Terminology

Memory Kernel

Contributions to Critical Path Delay

Contributions to Critical Path Delay

Global Buffer Delay: 1.1 ns

Contributions to Critical Path Delay

PE Delay: 0.48-0.70 ns

Contributions to Critical Path Delay

MEM Delay: 0 ns

Contributions to Critical Path Delay

SB Delay: 0.14 ns

Critical Path Model

Contributions:

● Global Buffer: 1.1 ns
● Switch Boxes: 0.14 ns
● PEs: 0.48-0.7 ns

After about 3 hops in the
interconnect, a critical path
with 1 PE will be dominated
by the interconnect

Critical Path Model

Critical Path Model

We must construct the delay model using the output of the place and route tool

Critical Path Model - Evaluation

Application Modeled (MHz) Measured (MHz) % Difference

Gaussian v1 158 200 -21.0%

Gaussian v2 295 280 5.4%

Gaussian v3 515 420 22.6%

Gaussian v4 793 600 32.2%

Harris v1 30 25 20.0%

Harris v2 137 160 -14.4%

Harris v3 335 300 11.7%

Harris v4 373 360 3.6%

Critical Path Model - Evaluation

Application Modeled (ns) Measured (ns) % Difference

Gaussian v1 6.33 5.00 26.6%

Gaussian v2 3.39 3.57 -5.1%

Gaussian v3 1.94 2.38 -18.4%

Gaussian v4 1.26 1.67 -24.3%

Harris v1 33.33 40.00 -16.7%

Harris v2 7.30 6.25 16.8%

Harris v3 2.99 3.33 -10.4%

Harris v4 2.68 2.78 -3.5%

Pipelining Techniques and Analysis

1. Compute Pipelining

2. Broadcast Pipelining

3. Placement Algorithm Tweaks

4. Post-PnR Pipelining

5. Register File Pipelining

Compute Pipelining

● At compute mapping, we know how many
PEs we will use and how they are connected

● Have all information needed to do branch
delay matching
● Ensures all paths from one memory to another

are the same number of cycles
● All registers are added to the compute graph

● Need to be packed into the PEs or placed onto
the routing fabric

Compute Pipelining

Baseline
Compute
Pipelining

Harris
Clk Freq (MHz) 26 147
Resource Utilization
(PE/Mem/Reg)

91/6/30 91/6/66

Camera Pipeline
Clk Freq (MHz) 17 32
Resource Utilization
(PE/Mem/Reg)

281/34/8 281/34/138

Gaussian
Clk Freq (MHz) 103 164
Resource Utilization
(PE/Mem/Reg)

160/8/136 160/8/160

Broadcast Signal Pipelining

MEM MEM MEMMEMMEM

Broadcast Signal Pipelining

MEM MEM MEMMEMMEM

MEM MEM MEMMEMMEM

Broadcast Signal Pipelining

Baseline
Compute
Pipelining

Broadcast
Pipelining

Harris
Clk Freq (MHz) 26 147 370
Resource Utilization
(PE/Mem/Reg)

91/6/30 91/6/66 91/6/86

Camera
Pipeline

Clk Freq (MHz) 17 32 84
Resource Utilization
(PE/Mem/Reg)

281/34/8 281/34/138 281/34/206

Gaussian
Clk Freq (MHz) 103 164 291
Resource Utilization
(PE/Mem/Reg)

160/8/136 160/8/160 160/8/211

Placement Algorithm Tweaks
● The cost metric for placement is total wirelength

● Generally leads to good routability

● For pipelining we care about max wirelength, not
total wirelength
● Using max wirelength alone as a cost metric for

placement leads to routability issues
● Instead we can create a new cost metric that

incorporates both maximum and total wirelength
● Total wirelengthn for n = [1…10] works well

x

y

half-perimeter wirelength = x+y

Placement Algorithm Exponent Parameter Sweep

Placement Algorithm Tweaks

Baseline
Compute
Pipelining

Broadcast
Pipelining

Placement
Tweaks

Harris
Clk Freq (MHz) 26 147 370 444
Resource Utilization
(PE/Mem/Reg)

91/6/30 91/6/66 91/6/86 91/6/86

Camera
Pipeline

Clk Freq (MHz) 17 32 84 231
Resource Utilization
(PE/Mem/Reg)

281/34/8 281/34/138 281/34/206 281/34/206

Gaussian
Clk Freq (MHz) 103 164 291 417
Resource Utilization
(PE/Mem/Reg)

160/8/136 160/8/160 160/8/211 160/8/211

Post Place and Route Pipelining

● Iteratively break the critical path determined by the STA tool
● Re-analyze and determine new critical path
● Continue until there are no more registers available to use on the

interconnect
● Adding pipelining registers to a placement result is not always possible

because branch delay matching is required

Post Place and Route Pipelining

Baseline
Compute
Pipelining

Broadcast
Pipelining

Placement
Tweaks

PnR
Pipelining

Harris
Clk Freq (MHz) 26 147 370 444 706
Resource Utilization
(PE/Mem/Reg)

91/6/30 91/6/66 91/6/86 91/6/86 91/6/102

Camera
Pipeline

Clk Freq (MHz) 17 32 84 231 231
Resource Utilization
(PE/Mem/Reg)

281/34/8 281/34/138 281/34/206 281/34/206 281/34/206

Gaussian
Clk Freq (MHz) 103 164 291 417 417
Resource Utilization
(PE/Mem/Reg)

160/8/136 160/8/160 160/8/211 160/8/211 160/8/211

Register File Pipelining

● We have a register file in every PE in the CGRA
● If we write and read every cycle to the same address, we can use this reg file

as a pipeline register
● If we write and read to offset incrementing addresses, we can use it as a

variable length pipeline register chain

Register File Pipelining

Baseline
Compute
Pipelining

Broadcast
Pipelining

Placement
Tweaks

PnR
Pipelining

With
Pipelining

Ponds

Harris
Clk Freq (MHz) 26 147 370 444 706 706
Resource Utilization
(PE/Mem/Reg)

91/6/30 91/6/66 91/6/86 91/6/86 91/6/102 91/6/84

Camera
Pipeline

Clk Freq (MHz) 17 32 84 231 231 264
Resource Utilization
(PE/Mem/Reg)

281/34/8 281/34/138 281/34/206 281/34/206 281/34/206 281/68/76

Gaussian
Clk Freq (MHz) 103 164 291 417 417 471
Resource Utilization
(PE/Mem/Reg)

160/8/136 160/8/160 160/8/211 160/8/211 160/8/211 160/8/187

Future Directions - Hardware Changes

● Using ready-valid signaling would make branch delay matching easier
● Rarely need to add registers to branch delay match
● FIFOs at tile inputs can be used to buffer data that arrives early

● Optimize global buffer to array path
● Current path is by far the longest in the array
● We would never be able to run applications at 1 GHz

Future Directions - Compiler Changes

● Make the scheduler more adaptable to different delays
● Our pipelining tools are currently over constrained
● The limiting factor when adding registers post-pnr is branch delay matching

● Improve the place and route tool
● There is too much variability in the max wirelength from run to run
● In the current PnR tool, routability as the primary concern
● We can add more emphasis on reducing maximum wirelength
● Fix the global placement algorithm and add congestion estimation

