Automatic Pipelining for CGRA Applications Techniques, Analysis, and Future Directions

Jack Melchert

Motivation

Problem: The applications running on our CGRA run at very low frequencies

Gaussian Blur	103 MHz
Harris Corner Detection	26 MHz
Camera Pipeline	17 Mhz

The maximum frequency of the CGRA is 780 MHz at 1.1 V $\,$

Motivation

Solution: Pipeline applications

- Un-pipelined applications have critical paths that typically start or end at a memory tile or outside of the array
- Adding pipelining registers to these paths should dramatically increase the maximum frequency of the applications

Goals

- Understand and model the delays in the array
 - Measure all contributions to the critical path
 - Integrate that data into a timing analysis tool that will accurately model the critical path in an application
- Create an automated pipelining approach
 - Our applications and hardware change frequently, so an automated approach is required

Terminology

Global Buffer Delay: 1.1 ns

PE Delay: 0.48-0.70 ns

MEM Delay: 0 ns

SB Delay: 0.14 ns

Critical Path Model

Contributions:

- Global Buffer: 1.1 ns
- Switch Boxes: 0.14 ns
- PEs: 0.48-0.7 ns

After about 3 hops in the interconnect, a critical path with 1 PE will be dominated by the interconnect

Critical Path Model

Critical Path Model

We must construct the delay model using the output of the place and route tool

Critical Path Model - Evaluation

Application	Modeled (MHz)	Measured (MHz)	% Difference
Gaussian v1	158	200	-21.0%
Gaussian v2	295	280	5.4%
Gaussian v3	515	420	22.6%
Gaussian v4	793	600	32.2%
Harris v1	30	25	20.0%
Harris v2	137	160	-14.4%
Harris v3	335	300	11.7%
Harris v4	373	360	3.6%

Critical Path Model - Evaluation

Application	Modeled (ns)	Measured (ns)	% Difference
Gaussian v1	6.33	5.00	26.6%
Gaussian v2	3.39	3.57	-5.1%
Gaussian v3	1.94	2.38	-18.4%
Gaussian v4	1.26	1.67	-24.3%
Harris v1	33.33	40.00	-16.7%
Harris v2	7.30	6.25	16.8%
Harris v3	2.99	3.33	-10.4%
Harris v4	2.68	2.78	-3.5%

Pipelining Techniques and Analysis

- 1. Compute Pipelining
- 2. Broadcast Pipelining
- 3. Placement Algorithm Tweaks
- 4. Post-PnR Pipelining
- 5. Register File Pipelining

Compute Pipelining

- At compute mapping, we know how many PEs we will use and how they are connected
- Have all information needed to do branch delay matching
 - Ensures all paths from one memory to another are the same number of cycles
- All registers are added to the compute graph
 - Need to be packed into the PEs or placed onto the routing fabric

Compute Pipelining

		Baseline	Compute Pipelining
	Clk Freq (MHz)	26	147
Harris	Resource Utilization (PE/Mem/Reg)	91/6/30	91/6/66
	Clk Freq (MHz)	17	32
Camera Pipeline	Resource Utilization (PE/Mem/Reg)	281/34/8	281/34/138
	Clk Freq (MHz)	103	164
Gaussian	Resource Utilization (PE/Mem/Reg)	160/8/136	160/8/160

(123	142									10		12	13	
1			n150	T						p22	1	r67		
2	p26	p27	.5 5			r135	r148	p25	p23	p24	m68	p146		34.
3			İ	p108	p70	r144	r165	p28		p29	r14	p152	r164	
1	pO	p41		p109	p71	p72	r117	p73	r134	p65	r14	r153		×6.
5	p110	p107	r85	r86	p69	r160		p63	p64	p30		r151		p131
6 p105	p111	p106							p76	p56	m16	p57		p132
7 p113	p112	r154	r81	p155	p136	p59		p80	p79	p78	r16	. p58		r133
8 p114	p115	p103	r156	p33	p32	p31	r121	p62	p75	p77		p126		
3	r116			p34	p35	P60	r128	p61	p88	=	_	-		
10		p40	r102	p21	p100		r130	r118	p89			p8	p10	p9
11		p158	r99	p20	p14	p12	m98	p91	p90		m51	p39	p38	p36
12		p16		p19	p15	p13	r94		p6	p4		p7	p11	
13		p17		p18	x97	, , ,5					r48	p3	p1	
14						r47						p2		

Broadcast Signal Pipelining

Broadcast Signal Pipelining

Broadcast Signal Pipelining

		Baseline	Compute Pipelining	Broadcast Pipelining	
	Clk Freq (MHz)	26	147	370	
Harris	Resource Utilization (PE/Mem/Reg)	91/6/30 91/6/66		91/6/86	
Camera Pipeline	Clk Freq (MHz)	17	32	84	
	Resource Utilization (PE/Mem/Reg)	281/34/8	281/34/138	281/34/206	
	Clk Freq (MHz)	103	164	291	
Gaussian	Resource Utilization (PE/Mem/Reg)	160/8/136	160/8/160	160/8/211	

1179	t 42	4	2	Ì		Ì		•		10		12		
1		p5	r47			p41								
2 r180	r166	<i>A</i>	n148		r172	p0			p40	p39		S		
3	r167	p6	r48	p3	r169	p11	r45	₽9	p10	p38				
4			m50	p2	p36	p37	r46	p8	p99	r100	r96	p17	p16	
5			r184		x126	r128	r188		r187	p15	r95	- p18		
8			r186	p70	p69	r120	m164	p68	r158					
7			r185	r136	p135	r117	r159	r131	p130	p12	r93	p14	p13	
3			r122	p56	p134	p55	r170	p57	p129	p90	n97	p19	r116	
3				p71	p72	p60	r145	p144	p61	p59	r160	p58	x127	r121
10				p89	p73	p76	r143	p77	-p62	p63	r91	p156	r118	
11		p88		p87	p74	p75	r137	p78	r139	p20	r155	r157	p124	r125
12	p105	p104	r82	p103	p35	p34	m86	p79	p33	p64	r84	p106	p107	
13		p110		p111	p153	p112	r115	p113	p32	p21	r65	p109	p108	
15				r152	p31	p30	r149	p114	p23	p102	m67	p150		
16	p26	p27		r54	p28	p29			p24	p22	r66			
						p25								

Placement Algorithm Tweaks

- The cost metric for placement is total wirelength
 - Generally leads to good routability
- For pipelining we care about max wirelength, not total wirelength y
 - Using max wirelength alone as a cost metric for placement leads to routability issues
 - Instead we can create a new cost metric that incorporates both maximum and total wirelength
 - Total wirelengthⁿ for n = [1...10] works well

half-perimeter wirelength = x+y

Placement Algorithm Exponent Parameter Sweep

Placement Algorithm Tweaks

		Baseline	Compute Pipelining	Broadcast Pipelining	Placement Tweaks
	Clk Freq (MHz)	26	147	370	444
Harris	Resource Utilization (PE/Mem/Reg)	91/6/30	91/6/66	91/6/86	91/6/86
Camera Pipeline	Clk Freq (MHz)	17	32	84	231
	Resource Utilization (PE/Mem/Reg)	281/34/8	281/34/138	281/34/206	281/34/206
	Clk Freq (MHz)	103	164	291	417
Gaussian	Resource Utilization (PE/Mem/Reg)	160/8/136	160/8/160	160/8/211	160/8/211

1179 142								10				
╹═╈╧╴╏╋═╾╴╴		r180										
2						a 3		a 3		· .		2
r166	m148						-					
3			p107	p108	r85	p109	p104					
•										50		×.
ęu I I I I I I I I I I I I I I I I I I I	p89 r125	r118	p88	p106	r84	p105	p103	r81		x92		
5 p41	p124 r122	r175	p26	p27	m86	p110	p153	-p24	r51	p23		
Б												
	p56 r168	p58	p87	p55	r178	p79	p28	p22		p29	p150	r65
2				FE								
	p90 r127	p156	p40	p25	r174	p144	p69	p39	m67		r151	p64
B	p57 m97	p20	p74	p73	r183	p21	p68	p31	I I I	p30	r149	
		.										
3	p12 r92	p15	p59	p130	r173	p111	p72	p71		p38		
10 p14	p13 r93	p19	p33	p76	m164	p32	p70	p102		p7	p114	p63
1	r94	p18	p75	p60	r101	p78	p61	p113 —		p37	p62	
12		p17		p77	m50	p1		p3	r115	p11	p10	
				L., 1			و 1					
13		p16	p34	p129	r49	p112	p35	p36	r45	p9		
14				r126	r48	p2	p4	p99	r47	p5		
				L_,Ē								
15						p135	p134			p6		

Post Place and Route Pipelining

- Iteratively break the critical path determined by the STA tool
- Re-analyze and determine new critical path
- Continue until there are no more registers available to use on the interconnect
 - Adding pipelining registers to a placement result is not always possible because branch delay matching is required

Post Place and Route Pipelining

			Compute	Broadcast	Placement	PnR
		Baseline	Pipelining	Pipelining	Tweaks	Pipelining
	Clk Freq (MHz)	26	147	370	444	706
Harris	Resource Utilization (PE/Mem/Reg)	91/6/30	91/6/66	91/6/86	91/6/86	91/6/102
Camera Pipeline	Clk Freq (MHz)	17	32	84	231	231
	Resource Utilization (PE/Mem/Reg)	281/34/8	281/34/138	281/34/206	281/34/206	281/34/206
	Clk Freq (MHz)	103	164	291	417	417
Gaussian	Resource Utilization (PE/Mem/Reg)	160/8/136	160/8/160	160/8/211	160/8/211	160/8/211

T179 T42						
1 r_ADDED 192r_ADDED 189	r180	- 1				
					a	
r166						
	p107	- p108 x85	p109 p104			
4 p0 p89 r125	r118 p88	p106 x84	p105 p103	r81	x52	
5 p41 p124 r122	r175 p26	p27 m86	p110 p197p153	p24 r51	p23	
5 p56 r168	pi	p55 x178	p79 p199p28	p22	p29 p150 r65	
7 p90 r127	p1 6 p40 p19	18p25	p144 p69	p39 m67	r151 p64	
p57 m37	p1 p74	p73 p201r_Appen2	D2p21p68	p31 r_ADDED	203p30 p204x149	
	لر والربيا	لي ولي ا				
p12 r32	p1 p59			p71	p38	
p14 p13 r93	p19 p33	p76 m164	p32 p70	p102	p7 p114 p194p63	
11 x94	p18 p75	p60 x101	p78 p61	p113	p37 p62	
12	p17	p77 m50	p1 p8	p3 r115	p11 p10	
13	p16 p34 n20	00p129 p195r49	p112 p35 p1	90p36 r45	p9	
14		r126 r48	p2 p4	p99 r47	p5	
15		لصاليها				
			p135 p134		P6	

Register File Pipelining

- We have a register file in every PE in the CGRA
- If we write and read every cycle to the same address, we can use this reg file as a pipeline register
- If we write and read to offset incrementing addresses, we can use it as a variable length pipeline register chain

Register File Pipelining

		Baseline	Compute Pipelining	Broadcast Pipelining	Placement Tweaks	PnR Pipelining	With Pipelining Ponds
	Clk Freq (MHz)	26	147	370	444	706	706
Harris	Resource Utilization (PE/Mem/Reg)	91/6/30	91/6/66	91/6/86	91/6/86	91/6/102	91/6/84
Camera Pipeline	Clk Freq (MHz)	17	32	84	231	231	264
	Resource Utilization (PE/Mem/Reg)	281/34/8	281/34/138	281/34/206	281/34/206	281/34/206	281/68/76
Gaussian	Clk Freq (MHz)	103	164	291	417	417	471
	Resource Utilization (PE/Mem/Reg)	160/8/136	160/8/160	160/8/211	160/8/211	160/8/211	160/8/187

Future Directions - Hardware Changes

- Using ready-valid signaling would make branch delay matching easier
 - Rarely need to add registers to branch delay match
 - FIFOs at tile inputs can be used to buffer data that arrives early
- Optimize global buffer to array path
 - Current path is by far the longest in the array
 - We would never be able to run applications at 1 GHz

Future Directions - Compiler Changes

- Make the scheduler more adaptable to different delays
 - Our pipelining tools are currently over constrained
 - The limiting factor when adding registers post-pnr is branch delay matching
- Improve the place and route tool
 - There is too much variability in the max wirelength from run to run
 - In the current PnR tool, routability as the primary concern
 - We can add more emphasis on reducing maximum wirelength
 - Fix the global placement algorithm and add congestion estimation