A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay Functions and Modular Inversion

Kavya Sreedhar, Mark Horowitz, Christopher Torng

skavya@stanford.edu

AHA Affiliates Meeting

May 4th, 2022

Cryptography relies on hard problems

- Modern cryptography is based on computationally hard problems
 - Typically requiring large-integer arithmetic
- Execution time of problems is critical
 - Re-evaluate with algorithmic and hardware advances
- Recent application developments motivate revisiting XGCD

Verifiable delay functions (VDFs)^[1]

- VDFs require slow evaluation but fast verification
 - Require fixed amount of sequential work to be evaluated
 - Output a unique result that is still efficiently verifiable
- Computationally hard problem can be a trapdoor function
 - y = f(x) is easy to compute
 - x = g(y) is difficult to compute without some secret s and f(s)

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Verifiable delay functions (VDFs)^[1]

- VDFs are increasingly being used in blockchain systems
- The VDF adopted by Chia spends 90+% of execution time on XGCDs
 - Inputs are large (1024+ bits) and not secret

Verifiable delays are useful to secure blockchain systems, and their performance determines VDF security levels.

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Elliptic Curve Cryptography (ECC)

- Used for public key authentication
- Construction has points (x, y) : $By^2 = x^3 + Ax^2 + x$
 - *A*, *B*, *x*, *y* can be integers mod *p*

Elliptic Curve Cryptography (ECC)

- Computationally hard problem
 - Given P, Q on the curve, find $k \in Z$ such that [k]P = Q
 - Points on curve (x, y) are integers mod p

Elliptic Curve Cryptography (ECC)

- Most time-consuming operation is modular inversion
 - Find x^{-1} such that $x * x^{-1} = 1 \pmod{p}$
 - Since x is secret, this must be constant-time
- Recently, XGCD was found to be the fastest way to do this ^[2]

ECC arithmetic now relies on XGCD, motivating a need for faster XGCD and reconsidering algorithms with many inversions.

[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

Application Summary

2018 [1]

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

How fast can one do XGCD?

- GCD is a fundamental operation in number theory and cryptography
 - Many algorithms developed in the 1980s/90s
 - More recently, software GCD libraries have been highly tuned
- However, few works have implemented extended GCD in hardware

Can we significantly improve XGCD performance with hardware?

XGCD accelerator design space

- Optimal algorithmic choice for hardware
- Large-integer arithmetic circuit optimizations
- Different application requirements

Prior hardware work: Builds from division-based algorithms

Our ASIC design: Builds from subtraction-based algorithms

XGCD accelerator design space

- Optimal algorithmic choice for hardware
- Large-integer arithmetic circuit optimizations
- Different application requirements

Prior hardware work: Directly adds large integers or suggests using carry-save adders

Our ASIC design: Uses carry-save adders and addresses related challenges

XGCD accelerator design space

- Optimal algorithmic choice for hardware
- Large-integer arithmetic circuit optimizations
- Different application requirements

Prior hardware work: provides point solutions targeting an application space

Our ASIC design: Can evaluate fast average and constanttime XGCD

Algorithms use GCD-preserving transformations

$$g = gcd(a, b) = gcd(a - b, b)$$

$$a = g * a_g, \qquad b = g * b_g$$

Algorithms use GCD-preserving transformations

Stein
$$g = gcd(a, b) = gcd(a - b, b)$$

 $a = g * a_g, \quad b = g * b_g$
 $\Rightarrow a - b = g * (a_g - b_g)$
 $3 = gcd(33, 9) = gcd(24, 9)$

Algorithms use GCD-preserving transformations

Stein
$$g = gcd(a, b) = gcd(a - b, b)$$

 $a = g * a_g, \quad b = g * b_g$
 $\Rightarrow a - b = g * (a_g - b_g)$
 $3 = gcd(33, 9) = gcd(24, 9)$

Euclid $gcd(a, b) = gcd(a \mod b, b)$ $a = g * a_g, \quad b = g * b_g$ $\Rightarrow a \mod b = a - b * q = g * (a_g - b_g * q)$ 3 = gcd(33, 9) = gcd(6, 9)

GCD algorithms example GCD(27,2) = 1

Euclid

a	b	Operation
27	2	start
2	1	27 mod 2
1	0	2 mod 1

GCD algorithms example GCD(27,2) = 1

Euclid

Stein^[1]

a	b	Operation	a	b	Operation
27	2	start	27	2	start
2	1	27 mod 2	27	1	b / 2
1	0	2 mod 1	26	1	subtract
			13	1	a / 2
			12	1	subtract
			6	1	a / 2
			3	1	a / 2
			2	1	subtract
			1	1	a / 2
			1	0	subtract

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967

GCD algorithms example GCD(27,2) = 1

Euclid

Stein^[1]

Two-bit Plus-Minus (PM)^[2]

а	b	Operation	а	b	Operation	а	b	Operation
27	2	start	27	2	start	27	2	original a, b
2	1	27 mod 2	27	1	b / 2	27	1	b / 2
1	0	2 mod 1	26	1	subtract	7	1	(a + b) / 4
			13	1	a / 2	2	1	(a + b) / 4
			12	1	subtract	1	1	a / 2
			6	1	a / 2	1	0	(a – b) / 4
			3	1	a / 2			
			2	1	subtract			
			1	1	a / 2			
			1	0	subtract			

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967.

[2] Yun and Zhang. A fast carry-free algorithm and hardware design for extended integer gcd computation. ACM Symposium on Symbolic and Algebraic Computation 1986.

Extended GCD (XGCD)

• Computes Bézout coefficients satisfying Bézout Identity

$$b_{a}, b_{b} : b_{a} * a_{0} + b_{b} * b_{0} = gcd(a_{0}, b_{0})$$

• Maintains these relations each cycle, where $gcd(a_0, b_0) = gcd(a, b)$

$$u * a_0 + m * b_0 = a$$

 $y * a_0 + n * b_0 = b$

Which approach is better in hardware?

• Goal: minimize execution time = iteration time * number of iterations

Which approach is better in hardware?

- Does the answer change for fast average vs constant-time execution?

Comparing number of iterations

• Worst-case number of iterations for 255-bit inputs

1X

283 284

- Euclid
- Two-bit PM

Two-bit PM will be faster

Comparing number of iterations

- Worst-case number of iterations for 255-bit inputs
 - Euclid
 - 283 284] 1X • Two-bit PM

Two-bit PM will be faster

- Average number of iterations for 1024-bit inputs
 - Euclid
 - Stein
 - Two-bit PM 1195

598
21633.6X
2X2XCan two-bit PM critical path
be 2X shorter than Euclid's?

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

Compute $q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute a - q * b

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

Compute $q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute a - q * b

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

- The fastest adder is a carry-save adder (CSA)
 - Eliminates carry propagation, requiring O(1) delay
 - Stores numbers in CSA form or redundant binary form

- The fastest adder is a carry-save adder (CSA)
 - Eliminates carry propagation, requiring O(1) delay
 - Stores numbers in CSA form or redundant binary form

- The fastest adder is a carry-save adder (CSA)
 - Eliminates carry propagation, requiring O(1) delay
 - Stores numbers in CSA form or redundant binary form

- The fastest adder is a carry-save adder (CSA)
 - Eliminates carry propagation, requiring O(1) delay
 - Stores numbers in CSA form or redundant binary form

Two-bit PM with CSAs

Critical path delay is 3 CSA delays

Euclid with CSAs

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Require 6-bit carry propagate adds to get MSBs of *a*, *b*

 $[\log_2(6)] + 1 = 3$ CSA delays

Euclid with CSAs

Compute
$$q \leq \lfloor \frac{a}{b} \rfloor \longrightarrow$$
 Compute $q * b \longrightarrow$ Compute $a - q * b$

Require 6-bit carry propagate adds to get MSBs of *a*, *b*

 $[\log_2(6)] + 1 = 3$ CSA delays

Need to add 14 values with CSAs $\approx \lfloor \log_{3/2}(14) \rfloor = 6$ CSA delays

Two-bit PM is a faster starting point

- Two-bit PM critical path delay estimate is 3X shorter than Euclid's
- Two-bit PM iteration counts are at most 2X higher than Euclid's

Two-bit PM with carry-save adders is the more promising starting point for hardware in the average and the worst-case.

We build from the two-bit PM

Two-bit Plus-Minus (PM)

а	b	Operation
27	2	original a, b
27	1	b / 2
7	1	(a + b) / 4
2	1	(a + b) / 4
1	1	a / 2
1	0	(a – b) / 4

We extend two-bit PM for XGCD

_

Pre-pro	cessing	Iterations Loop (each iteration completes in one clock cycle)			Post-processing		
(A)		$(B),(C) \rightarrow$ one iteration	(B),(C) next iteration	→	• • •	loop until termination condition is satisfied (D)	(E)
4 cycle Execut	tion Time →	Worst-case	1548 cycles for	r Desi	gn (1) and 38	6 cycles for Design (2)	8 cycles

Critical Path in 16nm

	102	4 bits	255	bits
Operation	Design (1) Delay (ns)	Design (1) FO4 Inv Delay	Design (2) Delay (ns)	Design (2) FO4 Inv Delay
Local clock gating	0.035	3.9	0.018	2
DFF clk to Q	0.040	4.4	0.045	5
Inverter	0	0	0.007	0.8
Add $u + y$: CSA 1	0.039	4.3	0.018	2
Add $u + y$: CSA 2	0.039	4.3	0.031	3.4
Buffer	0	0	0.013	1.4
Add $u + y + 2b_m$: CSA	0.034	3.8	0.030	3.3
Shift in CSA form	0.018	2	0.015	1.7
Late select multiplexers	0.018	2	0.018	2
Precomputing control	0.022	2.4	0.027	3
Total	0.257	28.6	0.220	24.4

Is three-bit PM faster in hardware?

1024 bits

	Max factor of two reduction when a or b is even	Max factor of two reduction when a and b are odd	Average Number of Cycles	$egin{array}{c} { m Cycle} { m Time} { m (ns)} \end{array}$	XGCD execution time (ns)	$\begin{array}{c} \mathrm{ASIC} \\ \mathrm{area} \\ (mm^2) \end{array}$
-	2	2	2210	0.193	427	0.16
	4	2	1845	0.218	402	0.21
Yes, three-bit PM has lowest average execution time	8	2	1740	0.251	437	0.35
	2	4	1450	0.234	339	0.22
	4	4	1211	0.247	299	0.28
	8	4	1143	0.257	294	0.41
	2	8	1091	0.297	324	0.27
	4	8	972	0.320	311	0.33
	8	8	937	0.330	309	0.47

Is three-bit PM faster in hardware?

1024 bits

	Max factor of two reduction when $a \ or \ b$ is $even$	$\begin{array}{c c} \text{Max factor of two} \\ \text{reduction when} \\ a \ and \ b \ \text{are} \ odd \end{array}$	Average Number of Cycles	Cycle Time (ns)	XGCD execution time (ns)	$\begin{array}{c} \mathrm{ASIC} \\ \mathrm{area} \\ (mm^2) \end{array}$
	2	2	2210	0.193	427	0.16
For constant-time	4	2	1845	0.218	402	0.21
TOT CONStant time	8	2	1740	0.251	437	0.35
No all thaca	2	4	1450	0.234	339	0.22
No, all these	4	4	1211	0.247	299	0.28
cases have same	8	4	1143	0.257	294	0.41
worst-case	2	8	1091	0.297	324	0.27
execution time.	4	8	972	0.320	311	0.33
	8	8	937	0.330	309	0.47

Constant-time and polynomial extensions

- Constant-time evaluation always runs worst-case number of cycles
 - Algorithm keeps dividing 0 by 2 when run for more cycles
 - Luckily, CSA form makes it unclear when *a*, *b* are 0
- Polynomial XGCD maps integer operations to polynomial ones
 - Reducing factors of 2 \Rightarrow Reducing factors of x
 - Checking evenness \Rightarrow Checking divisibility by x
 - Comparing integers \Rightarrow Comparing polynomial degrees

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.

[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.

[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.

[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.

[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.

[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.

[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.

[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.

255-bit Constant-time XGCD Comparisons

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.

[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

255-bit Constant-time XGCD Comparisons

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.

[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

255-bit Constant-time XGCD Comparisons

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.

[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

Takeaways

- XGCD is critical for recent cryptographic applications
 - Two-bit PM + CSAs are more promising for hardware
- This approach gives order-of-magnitude better performance
 - 30 40X faster than software
 - 8X faster than state-of-the-art ASIC and first constant-time ASIC
- We plan to tape out these designs in GF12 in September