A Fast Large-Integer Extended GCD Algorithm
and Hardware Design for Verifiable Delay
Functions and Modular Inversion

Kavya Sreedhar, Mark Horowitz, Christopher Torng

skavya@stanford.edu
AHA Affiliates Meeting
May 4th, 2022

mailto:skavya@stanford.edu

Cryptography relies on hard problems

* Modern cryptography is based on computationally hard problems
* Typically requiring large-integer arithmetic

* Execution time of problems is critical
* Re-evaluate with algorithmic and hardware advances

* Recent application developments motivate revisiting XGCD

Verifiable delay functions (VDFs) *

* VDFs require slow evaluation but fast verification
* Require fixed amount of sequential work to be evaluated
e Qutput a unique result that is still efficiently verifiable

* Computationally hard problem can be a trapdoor function
* v = f(x) is easy to compute
* x = g(y) is difficult to compute without some secret s and f(s)

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Verifiable delay functions (VDFs) *

* VDFs are increasingly being used in blockchain systems

 The VDF adopted by Chia spends 90+% of execution time on XGCDs
* Inputs are large (1024+ bits) and not secret

Verifiable delays are useful to secure blockchain systems, and their
performance determines VDF security levels.

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Elliptic Curve Cryptography (ECC)

» Used for public key authentication

e Construction has points (x,y) : By? = x3 + Ax* + x
* A, B, x,y can be integers mod p

A

P = (xp,fyi \/
&/\Q= (xq,¥q)

\

Elliptic Curve Cryptography (ECC)

* Computationally hard problem
 Given P, Q on the curve, find k € Z such that [k]P =
* Points on curve (x, y) are integers mod p

Elliptic Curve Cryptography (ECC)

* Most time-consuming operation is modular inversion
* Find x ! such that x * x =1 = 1 (mod p)
* Since x is secret, this must be constant-time

* Recently, XGCD was found to be the fastest way to do this (2!

ECC arithmetic now relies on XGCD, motivating a need for faster XGCD
and reconsidering algorithms with many inversions.

[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

Application Summary

2018 1]

Verifiable Delay
Functions (VDFs)

1024-bit XGCD
91% of execution time

2021 2]

Modular Inversion
for Elliptic
Curve25519

Extended GCD (XGCD)

Non-
Constant-
constant- .
: time
time

[1] Boneh et al. Verifiable delay functions. Crypto 2018.
[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

255-bit XGCD
100% of execution time

How fast can one do XGCD?

* GCD is a fundamental operation in number theory and cryptography
* Many algorithms developed in the 1980s/90s
* More recently, software GCD libraries have been highly tuned

* However, few works have implemented extended GCD in hardware

Can we significantly improve XGCD performance with hardware?

XGCD accelerator design space

Prior hardware work:

Builds from
e Optimal algorithmic choice for hardware division-based

algorithms

* Large-integer arithmetic circuit optimizations
Our ASIC design:

Builds from
subtraction-based
algorithms

* Different application requirements

XGCD accelerator design space

Prior hardware work:

Directly adds large
* Optimal algorithmic choice for hardware integers or suggests

using carry-save adders

* Large-integer arithmetic circuit optimizations
Our ASIC design:

Uses carry-save adders
and addresses related
challenges

* Different application requirements

XGCD accelerator design space

Prior hardware work:

provides point
e Optimal algorithmic choice for hardware solutions targeting an

application space

* Large-integer arithmetic circuit optimizations
Our ASIC design:

Can evaluate fast
average and constant-

time XGCD

* Different application requirements

Algorithms use GCD-preserving transformations

g = gcd(a,b) = gcd(a — b, b)
a=g=*ag, b=g*b,

Algorithms use GCD-preserving transformations

Stein g =gcd(a,b) =gcd(a—b,b)
a=g=*ag, b=g*b,
=>a—b=g=*(a; —by)

3 =gcd(33,9) = gcd(24,9)

Algorithms use GCD-preserving transformations

Stein g =gcd(a,b) =gcd(a—b,b)
a=g=*ag, b=g*b,
=>a—b=g=*(a; —by)

3 =gcd(33,9) = gcd(24,9)

Euclid gcd(a,b) = gcd(amod b, b)
a=g=*ag, b=g*b,
=>amodb=a—-bx*xq=gx*(a; — by *q)
3 =gcd(33,9) = gcd(6,9)

GCD algorithms example GCD (27,2) = 1

Euclid
a b Operation
27 2 start
2 1 27 mod 2
1 0 2 mod 1

GCD algorithms example GCD (27,2) = 1

Euclid Stein [

a b Operation a b Operation

27 2 start 27 2 start

2 1 27 mod 2 27 1 b/?2

1 0 2 mod 1 26 1 subtract
13 1 a/?2
12 1 subtract
6 1 a/?2
3 1 a/?2
2 1 subtract
1 1 a/?2
1 0 subtract

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967

GCD algorithms example GCD (27,2) = 1

Euclid Stein [

a b Operation a b Operation

27 2 start 27 2 start

2 1 27 mod 2 27 1 b/?2

1 0 2 mod 1 26 1 subtract
13 1 a/?2
12 1 subtract
6 1 a/?2
3 1 a/?2
2 1 subtract
1 1 a/?2
1 0 subtract

Two-bit Plus-Minus (PM) [2]

a b Operation
27 2 original a, b
27 1 b/?2

7 1 (a+b)/4

2 1 (a+b)/4

1 1 a/?2

1 0 (a—b)/4

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967.
[2] Yun and Zhang. A fast carry-free algorithm and hardware design for extended integer gcd computation. ACM Symposium on Symbolic and

Algebraic Computation 1986.

Extended GCD (XGCD)

* Computes Bézout coefficients satisfying Bézout Identity

ba, by : bgx ag + by x by = ged(ayg, by)

* Maintains these relations each cycle, where gcd(a,, by) = gcd(a, b)

U*xayg+m=by=a
y*ag+n*by=0>b

Which approach is better in hardware?

* Goal: minimize execution time = iteration time * number of iterations

Which approach is better in hardware?

* Goal: minimize execution time = iteration time * number of iterations

| |

cycle time * number of cycles

* Does the answer change for fast average vs constant-time execution?

Comparing number of iterations

* Worst-case number of iterations for 255-bit inputs

) Euclid. 283] 1X Two-bit PM will be faster
* Two-bit PM 284

Comparing number of iterations

* Worst-case number of iterations for 255-bit inputs

) Euclid. 283] 1X Two-bit PM will be faster
* Two-bit PM 284

* Average number of iterations for 1024-bit inputs

* Euclid 098 :l 3.6X |,y Can two-bit PM critical path

* Stein | 2163 be 2X shorter than Euclid’s?
e Two-bit PM 1195

Two-bit PM critical

u-+vy

»
AN

nath uty+B
2
u+y+B//// 2
2 \ u-+y B
4
u-+y B
2 |
2 \\\\\ ©+y

Two-bit PM critical path u+y+B

u+y+B//// 22

2 Can be rewritten as

+ B

u+y+ 3B
4

u-+vy

Two-bit PM critical

nath

u+y+B

u-+vy

»
AN

u-+vy

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

Get 6 > q
LUT |—
b | MsBs| 6 _

 Most quotients in Euclid’s algorithm are small for 1024-bit inputs
* Can estimate few of the most significant bits of g for faster execution

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

Multiplier

a 6 (b*xql[5])) «5 —
b Get 6 T OLUT i (bxql4]) «4 —

5
4
MSBs | 6 (b*xq[B3)«3 —
2]
1

|l xql2]) K2 —
b (bxq[l]) «1 —
(b=ql0]) —

 Most quotients in Euclid’s algorithm are small for 1024-bit inputs
* Can estimate few of the most significant bits of g for faster execution

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

Multiplier
a 6 b<<50r0 —
Get 6 T OLUT i b<«<4or0 — « b
b | MsBs | 6 . b«3or0 —— | q ,
, b<2o0r0 —
b b<1lor0O —
bor 0 —

 Most quotients in Euclid’s algorithm are small for 1024-bit inputs
* Can estimate few of the most significant bits of g for faster execution

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

Multiplier a
6 b<«<5o0r0 —
Get 6 > q
LUT — b<K4or0 — _
b | MSBs 6 b«3or0 —— | q*b# n a q*b=

. b<«<2o0r0 —

b b<«<1lor0 —

bor0 —

 Most quotients in Euclid’s algorithm are small for 1024-bit inputs
* Can estimate few of the most significant bits of g for faster execution

Euclid critical path

Compute g < [%J — Computeqg *b — Computea —q * b

a, Computing the remainder
Get 6 y R q b<50r(0 | —
b MSB 6 LUT b<4o0r0 | —
> > b«<3o0r0 | —

Multiplier a—dq *b‘

> b<K2o0r(Q | — +
b b<Klor(Q | —
bor0 —

a >

Critical paths primarily require additions

* The fastest adder is a carry-save adder (CSA)
* Eliminates carry propagation, requiring O (1) delay
 Stores numbers in CSA form or redundant binary form

1101
1111
0010

0000

A B
vy

Cout <—

1-bit
Full
Adder

<—(Cin

v

S

Critical paths primarily require additions

* The fastest adder is a carry-save adder (CSA)
* Eliminates carry propagation, requiring O (1) delay
 Stores numbers in CSA form or redundant binary form

carry]

1101 (a)

+ 1111 (b)

0010 (c)
0000

A B
vy

Cout <—

1-bit
Full
Adder

<—(Cin

v

S

Critical paths primarily require additions

* The fastest adder is a carry-save adder (CSA)
* Eliminates carry propagation, requiring O (1) delay
 Stores numbers in CSA form or redundant binary form

1101
1111
0010

(a)
(b)

(¢)

0000
11110

A B
vy

Cout <—

1-bit
Full
Adder

<—(Cin

v

S

Critical paths primarily require additions

* The fastest adder is a carry-save adder (CSA)

* Eliminates carry propagation, requiring O (1) delay
 Stores numbers in CSA form or redundant binary form

CSA

sum

carry

Add

X=X

sum

+ X

carry

—a+b+c

Two-bit PM with CSAs

u+y+ 3B
4

Usym ——b X sum 7
ucarry — CSA] oum

X carry Sum
Ysum —— > CSA Zcarry CSA .

> carr

y carry g —"
3B

Critical path delay is 3 CSA delays

Fuclid with CSAs

Compute g < [%J — Computeqg *b — Computea —q * b

a#

6
Get 6 > q
LUT |

b | MsBs| 6
~

Require 6-bit carry propagate
adds to get MSBs of a, b

|log,(6)] + 1 = 3 CSA delays

Fuclid with CSAs

Compute g < [%J — Computeqg *b — Computea —q * b

a, Computing the remainder
Get 6 y R q b<50r(0 | —
b MSB 6 LUT b<4o0r0 | —

: ; Multiplier 2 <3079 1 — a—qx*b
> P b<2o0r0 | —| 4 >
b b<Klor0Q | —
b or 0 —
Require 6-bit carry propagate Zr .
adds to get MSBs of a, b
|)
I
llog,(6)] + 1 = 3 CSA delays Need to add 14 values with CSAs

~ [log3/2(14)J = 6 CSA delays

Two-bit PM is a faster starting point

* Two-bit PM critical path delay estimate is 3X shorter than Euclid’s
* Two-bit PM iteration counts are at most 2X higher than Euclid’s

Two-bit PM with carry-save adders is the more promising starting
point for hardware in the average and the worst-case.

We build from the two-bit PM

Two-bit Plus-Minus (PM)

a b Operation
27 2 original a, b
27 1 b/2

7 1 (a+b)/4

2 1 (a+b)/4

1 1 a/?2

1 0 (a—b)/4

next a

We extend two-bit PM for XGCD

|
|
|
l
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
1

compute Yz |_>
compute Uy | —
compute Uy |_>
compute (u+y)y | —
compute (u-y)/4 | —
compute (u+b,)/8 | —
compute (u+b,)/4 | —
compute (u+b,)/2 | —
compute (u+2b,)) /5 | —
compute (u+2b,,) /4 | —
compute (u+3b,) /g | —
compute (u+3b,,) /4 | —
compute (u+4b,)) /g | —
compute (u+5b,)) /5 | —
compute (u+6b,) /g | —
compute (u+7bp) /8 | —
compute (u+y+b) /4 |—>
compute (U-y+by) /4 |—>
compute (ut+y+2bp),, |_>
compute (u-y+2bp) /, |_>
compute (u+y+3bp,),, |_>
compute (u-y+3by,)/, |—>

nextu

1

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

(A) B),C) - B),WO©K - e e e loop until termination condition is satisfied (E)
one iteration next iteration (D)
4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

Execution Time ——

compute Uy | ™
compute Uy | —
compute Y, |_>
compute (u+y) | -
compute (u-y)/4 | —
compute (u+b,)/8 | —
compute (u+b,)/4 | —
compute (u+b,)/2 | —
compute (u+2b,)) /5 | —
compute (u+2b,,) /4 | —

compute (u+3b,)) /g |—> nextuD

compute (u+3b,,) /4 | — -
compute (u+4b,)) /g | — u
compute (u+5b,)) /5 | —

compute (u+6b,) /g | —

compute (u+7b,) /g | —

compute (u+y+b) /4 | —

compute (U-y+by) /4 | —

compute (ut+y+2bp),, | —

compute (u-y+2bp) /, | —

compute (u+y+3bp,),, | —

— e e e e — — — — [— [— [— [— [— [[— [— [— [[y [y by

compute (u-y+3bp) /, | —

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

(A) (B) ,(C) - (B) ,(C) - e o e loop until termination condition is satisfied (E)
one iteration next iteration (D)
4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles
Execution Time —
next § Note that all shifts are in CSA form (Section 4.2.1
s / ote that all shifts are in orm (Section 4.2.1) /l computell/s |_>
3 - u —[>>3 | input to mux
5 :: | compute Uy | —
1> 6 4 inputs with u,y in CSA form: [compute y/ | —
3 need 2 CSAs
o e _ [oommewny,]
@ - u—
CSA| [csa]
> b || o o y— 22 Jo input o mux | compute (u-y)4 |—
> f(——
4 b[0] —»{ Control
Fbol0] SIMISB] N I | compute (u+b,,)/8 | —
inputs with u in orm:
(B) Update [Ceompute wing /| —
Y —>lcsa input to mux \| compute (u+b,)/2 | —
o lesA [T 1
m
Iterations Loop If False | compute (u+2bp,) /g | -
- Higher multiples of ap, ¥ 5 inputs with u,y in CSA form: Critical Path | compute (u+2b,,) /4 | —
are similarly calculated Constant-time: check if need 3 CSAs
- éslam: ;hift an’; by 2 b Eycle coun}: is keqfual to worst-case u — | compute (u+3by) /g | I next u
- Sam: 2am + 3am therwise: check i — CSA| [— 5 input —>
- 6am: 4am + 2am a==0orb== 3by — to mux | compute (u+3by) /4 | -
- Tam: 4am + 3am 3 If True ol
- Similar logic calculates | compute (u+4b,) /g | — u
multiples of bm Post-processing | o @155 |
compute (u+ m) /8 —
(A) Pre-processing (D) Control flow E D D D E [compute wribg /5| —>
a | compute (u+7bp) /8 | —
>
b Bon a+b R u y m n a b | compute (u+y+b) /4 | —
u ged All these variables are registered and | compute (y+br) /2 |_’
— _, | NEGATE | b, updated every clock cycle
Y, [ADD R ifatb<0 —> - The logic for updating u is shown | compute (wy+2bp), | —
m | by | - Similar logic is used for updating y, m, n, | compute (u-y+2bp) | —
— r —- with -ap, substituted for +byy, for m,n e
.« e . . u
0, [ADD - The logic in just the first five update options | _compute (w+y+3by), |—»
a [0] -] is used for updating a, b ‘ compute (u-y+3by,)/, |_’
b, 0] »{ Control
c[MSB] -

(E) Post-processing

(C) Variable (u, y, m, n, a, b) updates

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

(A) B),(C) - (B)(C) —» e e e loopuntil termination condition is satisfied (E)
one iteration next iteration (D)
4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

Execution Time ——

Pre- and post-processing run at
T4 main clock frequency for
carry-propagate adds

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing
(A) B),C) - B),.0©K - e o e loop until termination condition is satisfied (E)
one iteration next iteration (D)
4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles
A

Execution Time ——

Termination condition samples
a, b every four cycles

Pre-processing

Iterations Loop (each iteration completes in one clock cycle)

Post-processing

(A) B),(C) - (B)(C) —» e e e loopuntil termination condition is satisfied (E)
one iteration next iteration (D)
4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

Execution Time ——

Preserve sign and correct
truncated results when
shifting in CSA form

u —»
y —

- need 1 CSA

u—
y —
3by, —

u —»[>>3 | input to mux

4 inputs with u,y in CSA form:
need 2 CSAs

—[>>2 | input to mux

CSA

3 inputs with u in CSA form:
u — .
CSA _>-_> input to mux
b, —> .

5 inputs with u,y in CSA form: ies
B vy Critical Path

— =2 e |

to mux

Pre-processing

Iterations Loop (each iteration completes in one clock cycle)

Post-processing

(A) B),C) - B),C) — oo loop until termination condition is satisfied (E)
one iteration next iteration (D)
4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

Execution Time ——

Minimize control overhead

Compute update options in
parallel and use late selects
Precompute control signals

’ compute Uy |_>
’ compute Uy | —
’ compute U/, | —
’ compute (u+y)y |_>
’ compute (u-y)/4 |—>
’ compute (u+b,,)/8 |_,
’ compute (u+b,)/4 | —
’ compute (u+b,)/2 | —
’ compute (u+2b,,) /5 | —
[compute ui2by) 4 |—
’ compute (u+3b)) /g | —
> ’ compute (u+3b,,) /4 | —
’ compute (u+4b,)) /g | —
[compute (w+sb,) 5 | —>
’ compute (u+6b)) /g | —
’ compute (u+7b,) /g |—>
’ compute (u+y+b) /4 |—>
’ compute (u-y+b) /4 |—>
’ compute (u+y+2by,),, |—>
’ compute (u-y+2by) /0 |—>
’ compute (u+y+3bp,),, |—>
’ compute (u-y+3bp,) ,, |—>

next u D
s

Critical Path in 16nm

1024 bits 255 bits
Design (1) | Design (1) |Design (2)| Design (2)

Operation Delay (ns) |FO4 Inv Delay | Delay (ns) | FO4 Inv Delay
Local clock gating 0.035 3.9 0.018 2
DFF clk to Q 0.040 4.4 0.045 5
Inverter 0 0 0.007 0.8
Add u+y: CSA 1 0.039 4.3 0.018 2

Add u +y: CSA 2 0.039 4.3 0.031 3.4
Buffer 0 0 0.013 1.4
Add u + y + 2b,,: CSA 0.034 3.8 0.030 3.3
Shift in CSA form 0.018 2 0.015 1.7
Late select multiplexers 0.018 2 0.018 2
Precomputing control 0.022 2.4 0.027 3
Total 0.257 28.6 0.220 24.4

s three-bit PM faster in hardware?

Yes, three-bit PM
has lowest average —,

execution time

1024 bits

Max factor of two | Max factor of two | Average | Cycle XGCD ASIC
reduction when reduction when Number | Time | execution | area
a or bis even a and b are odd | of Cycles | (ns) | time (ns) | (mm?)

2 2 2210 0.193 427 0.16

4 2 1845 0.218 402 0.21

8 2 1740 0.251 437 0.35

2 4 1450 0.234 339 0.22

4 4 1211 0.247 299 0.28

8 4 1143 0.257 294 0.41

2 8 1091 0.297 324 0.27

4 8 972 0.320 311 0.33

8 8 937 0.330 309 0.47

s three-bit PM faster in hardware?

For constant-time

No, all these
cases have same

worst-case
execution time.

1024 bits

Max factor of two | Max factor of two | Average | Cycle XGCD ASIC
reduction when reduction when Number | Time | execution | area
a or bis even a and b are odd | of Cycles | (ns) | time (ns) | (mm?)

2 2 2210 0.193 427 0.16

4 2 1845 0.218 402 0.21

8 2 1740 0.251 437 0.35

2 4 1450 0.234 339 0.22

4 4 1211 0.247 299 0.28

8 4 1143 0.257 294 0.41

2 8 1091 0.297 324 0.27

4 8 972 0.320 311 0.33

8 8 937 0.330 309 0.47

Constant-time and polynomial extensions

e Constant-time evaluation always runs worst-case number of cycles
* Algorithm keeps dividing 0 by 2 when run for more cycles
e Luckily, CSA form makes it unclear when a, b are 0

* Polynomial XGCD maps integer operations to polynomial ones
* Reducing factors of 2 = Reducing factors of x
* Checking evenness = Checking divisibility by x
 Comparing integers = Comparing polynomial degrees

1024-bit Fast Average XGCD Comparisons

100000
=
3 10000
g 1] Our ASIC
_“>’ 1000
O 100 Legend
gJo e Software
g 10 * FPGA
<?i ASIC

1
0.01 0.1 1 10

Clock Frequency (GHz)

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

Software
100000 Benchmark with 10.7 VS

e GNU XGCD C++ on
8 10000 Apple M1 (5nm)
O Our ASIC
21000
>
O 100 Legend
gJo e Software
g 10 * FPGA
5: « ASIC

1

0.01 0.1 1 10

Clock Frequency (GHz)

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

Software

100000 Benchmark with 10.7 VS
Y= GNU XGCD C++ on
@)
2 1000
>
O 100 Legend
gJo e Software
g 10 * FPGA
5: e ASIC

1
0.01 0.1 1 10

Clock Frequency (GHz)

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

Builds from Euclid’s

o 100000 algorithm and has 1079~
g higher cycle counts
o 10000 — 20X faster
> [1] =
%; 1000 794 1S
O 100 Legend
8’0 e Software
g 10 * FPGA
Z ASIC

1

0.01 0.1 1 10

Clock Frequency (GHz)

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

Software
100000 Benchmark with 10.7 VS

e GNU XGCD C++ on
- Apple M1 (5
8 10000 PP (5nm) 36X faster
¢ 1000 J9A TS
O 100 Legend
gJo e Software
g 10 * FPGA
<?i ASIC

1

0.01 0.1 1 10

Clock Frequency (GHz)

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

Run at 40MHz, while | —_
MlrunsatGHz | g ys 30

Directly implements
Euclid’s algorithm

100000

c
o 10000 6 uS
o
2 1000 [1]
O
=
> 100 / Legend
gJo Software
g 10 * FPGA
5: e ASIC
1
0.01 0.1 1 10

Clock Frequency (GHz)

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

Directly implements 9.7 uS

100000 Euclid’s algorithm 15 US : —

=
310000 3X faster 51X faster
P [1]
%; 1000
> 100 / Legend
gJo Software
g 10 * FPGA
2 e ASIC

1

0.01 0.1 1 10

Clock Frequency (GHz)

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

255-bit Constant-time XGCD Comparisons

100000
+ 3 1
S 10000 3] L]
S
5 1000 //lﬂ/
g Our AS\C
O 100 Legend
V * Software
© 10 * FPGA
-5; e ASIC
o 1
= 0.1 1 10

Clock Frequency (GHz)

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

255-bit Constant-time XGCD Comparisons

State-of-the-art

100000 software implements P——

Clock Frequency (GHz)

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.

[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

- 3 Stein’s algorithm 1 3.7V
§ 10000 /,,.E..]/ w
z) 1000 wﬂHasterm
S — Our ASIC e

O 100 Legend

V e Software

3 10 * FPGA

.5; * ASIC

o 1

= 0.1 1

10

255-bit Constant-time XGCD Comparisons

100000
S 10000
S
> 1000
=
S 100
S
S 10
5 1
=

A1 US_

[1] 1

—

963 ns 2745

Implements division-

Legend
Software

1

_[2]
Our ASIC____o—

based algorithm from [1]

Runs at 200MHz while
[1], [2] run at 2.3GHz

Direct FPGA comparison
to [3]: 48X faster
ASIC is 480X faster

Clock Frequency (GHz)

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.

[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

85 ns_

Takeaways

e XGCD is critical for recent cryptographic applications
* Two-bit PM + CSAs are more promising for hardware

* This approach gives order-of-magnitude better performance
e 30 — 40X faster than software
e 8X faster than state-of-the-art ASIC and first constant-time ASIC

* We plan to tape out these desighs in GF12 in September

