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Cryptography relies on hard problems

• Modern cryptography is based on computationally hard problems
• Typically requiring large-integer arithmetic

• Execution time of problems is critical
• Re-evaluate with algorithmic and hardware advances

• Recent application developments motivate revisiting XGCD



Verifiable delay functions (VDFs) [1] 

• VDFs require slow evaluation but fast verification
• Require fixed amount of sequential work to be evaluated 
• Output a unique result that is still efficiently verifiable

• Computationally hard problem can be a trapdoor function
• 𝑦 = 𝑓(𝑥) is easy to compute 
• 𝑥 = 𝑔(𝑦) is difficult to compute without some secret 𝑠 and 𝑓 𝑠

[1] Boneh et al. Verifiable delay functions. Crypto 2018.



Verifiable delay functions (VDFs) [1]

• VDFs are increasingly being used in blockchain systems

• The VDF adopted by Chia spends 90+% of execution time on XGCDs
• Inputs are large (1024+ bits) and not secret

Verifiable delays are useful to secure blockchain systems, and their 
performance determines VDF security levels.

[1] Boneh et al. Verifiable delay functions. Crypto 2018.



𝑃 = (𝑥!, 𝑦!)

𝑄 = (𝑥", 𝑦")

• Used for public key authentication

• Construction has points 𝑥, 𝑦 ∶ 𝐵𝑦! = 𝑥" + 𝐴𝑥! + 𝑥
• 𝐴, 𝐵, 𝑥, 𝑦 can be integers mod 𝑝

Elliptic Curve Cryptography (ECC)



𝐴 𝐵

𝐶

• Computationally hard problem
• Given 𝑃, 𝑄 on the curve, find 𝑘 ∈ 𝑍 such that 𝑘 𝑃 = 𝑄
• Points on curve (𝑥, 𝑦) are integers mod 𝑝

Elliptic Curve Cryptography (ECC)



Elliptic Curve Cryptography (ECC)

• Most time-consuming operation is modular inversion
• Find 𝑥#$ such that 𝑥 ∗ 𝑥#$ = 1 𝑚𝑜𝑑 𝑝
• Since 𝑥 is secret, this must be constant-time

• Recently, XGCD was found to be the fastest way to do this [2]

ECC arithmetic now relies on XGCD, motivating a need for faster XGCD 
and reconsidering algorithms with many inversions.

[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.



Application Summary

Verifiable Delay 
Functions (VDFs)

Modular Inversion 
for Elliptic 

Curve25519

Extended GCD (XGCD)

Non-
constant-

time

Constant-
time

1024-bit XGCD
91% of execution time

255-bit XGCD 
100% of execution time

2018 [1] 2021 [2]

[1] Boneh et al. Verifiable delay functions. Crypto 2018.
[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.



How fast can one do XGCD?

• GCD is a fundamental operation in number theory and cryptography
• Many algorithms developed in the 1980s/90s
• More recently, software GCD libraries have been highly tuned

• However, few works have implemented extended GCD in hardware

Can we significantly improve XGCD performance with hardware?



XGCD accelerator design space

• Optimal algorithmic choice for hardware

• Large-integer arithmetic circuit optimizations

• Different application requirements

Prior hardware work: 
Builds from 

division-based 
algorithms

Our ASIC design: 
Builds from 

subtraction-based 
algorithms



XGCD accelerator design space

• Optimal algorithmic choice for hardware

• Large-integer arithmetic circuit optimizations

• Different application requirements

Prior hardware work: 
Directly adds large 

integers or suggests 
using carry-save adders

Our ASIC design: 
Uses carry-save adders 
and addresses related 

challenges



XGCD accelerator design space

• Optimal algorithmic choice for hardware

• Large-integer arithmetic circuit optimizations

• Different application requirements

Prior hardware work: 
provides point 

solutions targeting an 
application space

Our ASIC design:
Can evaluate fast 

average and constant-
time XGCD



Algorithms use GCD-preserving transformations

𝒈 = 𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂 − 𝒃, 𝒃)
𝑎 = 𝑔 ∗ 𝑎% , 𝑏 = 𝑔 ∗ 𝑏%



Algorithms use GCD-preserving transformations

𝒈 = 𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂 − 𝒃, 𝒃)
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3 = 𝑔𝑐𝑑 33, 9 = 𝑔𝑐𝑑(24, 9)

Stein



Algorithms use GCD-preserving transformations

𝒈 = 𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂 − 𝒃, 𝒃)
𝑎 = 𝑔 ∗ 𝑎% , 𝑏 = 𝑔 ∗ 𝑏%
⇒ 𝑎 − 𝑏 = 𝑔 ∗ (𝑎% − 𝑏%)

3 = 𝑔𝑐𝑑 33, 9 = 𝑔𝑐𝑑(24, 9)

𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂𝒎𝒐𝒅 𝒃, 𝒃)
𝑎 = 𝑔 ∗ 𝑎% , 𝑏 = 𝑔 ∗ 𝑏%

⇒ 𝑎 𝑚𝑜𝑑 𝑏 = 𝑎 − 𝑏 ∗ 𝑞 = 𝑔 ∗ (𝑎% − 𝑏% ∗ 𝑞)
3 = 𝑔𝑐𝑑 33, 9 = 𝑔𝑐𝑑(6, 9)

Stein

Euclid



GCD algorithms example 𝐺𝐶𝐷 27,2 = 1

a b Operation
27 2 start
2 1 27 mod 2
1 0 2 mod 1

Euclid



GCD algorithms example 𝐺𝐶𝐷 27,2 = 1

a b Operation
27 2 start
2 1 27 mod 2
1 0 2 mod 1

Euclid
a b Operation
27 2 start
27 1 b / 2
26 1 subtract
13 1 a / 2
12 1 subtract
6 1 a / 2
3 1 a / 2
2 1 subtract
1 1 a / 2
1 0 subtract

Stein [1]

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967



GCD algorithms example 𝐺𝐶𝐷 27,2 = 1

a b Operation
27 2 start
2 1 27 mod 2
1 0 2 mod 1

Euclid
a b Operation
27 2 start
27 1 b / 2
26 1 subtract
13 1 a / 2
12 1 subtract
6 1 a / 2
3 1 a / 2
2 1 subtract
1 1 a / 2
1 0 subtract

Stein [1]

a b Operation
27 2 original a, b
27 1 b / 2
7 1 (a + b) / 4
2 1 (a + b) / 4
1 1 a / 2
1 0 (a – b) / 4

Two-bit Plus-Minus (PM) [2]

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967.
[2] Yun and Zhang. A fast carry-free algorithm and hardware design for extended integer gcd computation. ACM Symposium on Symbolic and 
Algebraic Computation 1986.



Extended GCD (XGCD)

• Computes Bézout coefficients satisfying Bézout Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎( + 𝒃𝒃 ∗ 𝑏( = gcd 𝑎(, 𝑏(

• Maintains these relations each cycle, where gcd 𝑎(, 𝑏( = gcd(𝑎, 𝑏)

𝑢 ∗ 𝑎( +𝑚 ∗ 𝑏( = 𝑎
𝑦 ∗ 𝑎( + 𝑛 ∗ 𝑏( = 𝑏



Which approach is better in hardware? 

• Goal: minimize execution time = iteration time ∗ number of iterations



Which approach is better in hardware? 

• Goal: minimize execution time = iteration time ∗ number of iterations

• Does the answer change for fast average vs constant-time execution?

cycle time ∗ number of cycles



Comparing number of iterations

• Worst-case number of iterations for 255-bit inputs
• Euclid 283
• Two-bit PM 284 1X Two-bit PM will be faster



• Worst-case number of iterations for 255-bit inputs
• Euclid 283
• Two-bit PM 284

• Average number of iterations for 1024-bit inputs
• Euclid 598
• Stein 2163
• Two-bit PM 1195

Comparing number of iterations

3.6X 2X

1X Two-bit PM will be faster

Can two-bit PM critical path 
be 2X shorter than Euclid’s?



Two-bit PM critical path 𝑢 + 𝑦 + 𝐵
2 + 𝐵
2𝑢 + 𝑦 + 𝐵

2

𝑢 + 𝑦
2

𝑢 + 𝑦

𝑢 + 𝑦 + 𝐵
4

𝑢 + 𝑦
2 + 𝐵
2

𝑢 + 𝑦
4

If odd

If odd

If odd

If even

If even

If even



Two-bit PM critical path 𝑢 + 𝑦 + 𝐵
2 + 𝐵
2𝑢 + 𝑦 + 𝐵

2

𝑢 + 𝑦

If odd

If odd

𝑢 + 𝑦 + 3𝐵
4

Can be rewritten as



Two-bit PM critical path 𝑢 + 𝑦 + 3𝐵
4𝑢 + 𝑦 + 𝐵

2

𝑢 + 𝑦
2

𝑢 + 𝑦

𝑢 + 𝑦 + 𝐵
4

𝑢 + 𝑦 + 2𝐵
4

𝑢 + 𝑦
4

If odd

If odd

If odd

If even

If even

If even



Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏Compute 𝑞 ≤ ⌊!
"
⌋



Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

Compute 𝑞 ≤ ⌊!
"
⌋



Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞

Multiplier
𝑏 ∗ 𝑞 5 ≪ 5
𝑏 ∗ 𝑞 4 ≪ 4
𝑏 ∗ 𝑞 3 ≪ 3
𝑏 ∗ 𝑞 2 ≪ 2
𝑏 ∗ 𝑞 1 ≪ 1
𝑏 ∗ 𝑞 0

+
𝑞 ∗ 𝑏

6

6

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

Compute 𝑞 ≤ ⌊!
"
⌋

𝑏



Multiplier

Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞

𝑞 ∗ 𝑏
6

6

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

Compute 𝑞 ≤ ⌊!
"
⌋

+

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

𝑏



Multiplier

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞

𝑞 ∗ 𝑏
6

6 𝑎 − 𝑞 ∗ 𝑏

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

+

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

+

𝑎

𝑏



Computing the remainder

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0
𝑎

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏



Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

+



Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

+

carry



Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

++



Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

a
CSA

xsum
xcarryb

c
Add

x = xsum + xcarry = a + b + c



Two-bit PM with CSAs

𝑢𝑠𝑢𝑚
CSA

CSA

𝑥𝑠𝑢𝑚
𝑥𝑐𝑎𝑟𝑟𝑦

𝑧𝑠𝑢𝑚
𝑧𝑐𝑎𝑟𝑟𝑦 CSA

𝑢𝑐𝑎𝑟𝑟𝑦
𝑦𝑠𝑢𝑚
𝑦𝑐𝑎𝑟𝑟𝑦
3𝐵

𝑢 + 𝑦 + 3𝐵
4

Critical path delay is 3 CSA delays

𝑟𝑠𝑢𝑚
𝑟𝑐𝑎𝑟𝑟𝑦



Euclid with CSAs

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

𝑏

𝑎

Require 6-bit carry propagate 
adds to get MSBs of 𝑎, 𝑏

log# 6 + 1 = 3 CSA delays



Euclid with CSAs

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

Computing the remainder
𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏

Require 6-bit carry propagate 
adds to get MSBs of 𝑎, 𝑏

log# 6 + 1 = 3 CSA delays Need to add 14 values with CSAs
≈ log$/# 14 = 6 CSA delays

𝑎



Two-bit PM is a faster starting point

• Two-bit PM critical path delay estimate is 3X shorter than Euclid’s
• Two-bit PM iteration counts are at most 2X higher than Euclid’s

Two-bit PM with carry-save adders is the more promising starting 
point for hardware in the average and the worst-case.



We build from the two-bit PM

a b Operation
27 2 original a, b
27 1 b / 2
7 1 (a + b) / 4
2 1 (a + b) / 4
1 1 a / 2
1 0 (a – b) / 4

Two-bit Plus-Minus (PM) 𝑎
4
𝑎
2

𝑎 + 𝑏
4

𝑎 − 𝑏
4
𝑎

next 𝑎



Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form: 
need 3 CSAs

CSA CSA CSA >> 2 input 
to mux

u
bm

3 inputs with u in CSA form: 
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if 
    cycle count is equal to worst-case
Otherwise: check if 
    a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

We extend two-bit PM for XGCD



Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing
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a
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ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd
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(B),(C)
one iteration
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(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates
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4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
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   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b
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(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if 
    cycle count is equal to worst-case
Otherwise: check if 
    a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow



Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
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y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates
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Note that all shifts are in CSA form (Section 4.2.1)
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4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form: 
need 3 CSAs

CSA CSA CSA >> 2 input 
to mux

u
bm

3 inputs with u in CSA form: 
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
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- The logic in just the first five update options 
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- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
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   are similarly calculated
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- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if 
    cycle count is equal to worst-case
Otherwise: check if 
    a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow



Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u
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3 inputs with u in CSA form: 
need 1 CSA
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y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b
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- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 
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Note that all shifts are in CSA form (Section 4.2.1)
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4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles
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need 3 CSAs

CSA CSA CSA >> 2 input 
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3 inputs with u in CSA form: 
need 1 CSA

CSA >> 1 input to mux
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y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b
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(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if 
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- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
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   - 6am: 4am + 2am
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- Similar logic calculates
  multiples of bm 
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Preserve sign and correct 
truncated results when 

shifting in CSA form
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Note that all shifts are in CSA form (Section 4.2.1)
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5 inputs with u,y in CSA form: 
need 3 CSAs

CSA CSA CSA >> 2 input 
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3 inputs with u in CSA form: 
need 1 CSA

CSA >> 1 input to mux
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y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b
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(D) Control flow
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    cycle count is equal to worst-case
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- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Minimize control overhead
• Compute update options in 

parallel and use late selects
• Precompute control signals
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Note that all shifts are in CSA form (Section 4.2.1)
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4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles
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need 3 CSAs
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3 inputs with u in CSA form: 
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form: 
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and 
   updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n, 
   with -am substituted for +bm for m, n
- The logic in just the first five update options 
   is used for updating a, b
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(D) Control flow

Iterations Loop
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    cycle count is equal to worst-case
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    a == 0 or b == 0
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- Higher multiples of am 
   are similarly calculated
   - 4am: shift am by 2
   - 5am: 2am + 3am
   - 6am: 4am + 2am
   - 7am: 4am + 3am
- Similar logic calculates
  multiples of bm 
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Critical Path in 16nm
1024 bits 255 bits



Is three-bit PM faster in hardware?

Yes, three-bit PM 
has lowest average 

execution time

1024 bits



Is three-bit PM faster in hardware?

No, all these 
cases have same 

worst-case 
execution time.

1024 bits

For constant-time



Constant-time and polynomial extensions

• Constant-time evaluation always runs worst-case number of cycles
• Algorithm keeps dividing 0 by 2 when run for more cycles
• Luckily, CSA form makes it unclear when 𝑎, 𝑏 are 0

• Polynomial XGCD maps integer operations to polynomial ones
• Reducing factors of 2 ⇒ Reducing factors of 𝑥
• Checking evenness ⇒ Checking divisibility by 𝑥
• Comparing integers ⇒ Comparing polynomial degrees
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[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.
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294 ns
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15 us
3X faster 51X faster

Our ASIC
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Our ASIC

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.
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2.7 us
3.7 us

State-of-the-art 
software implements 

Stein’s algorithm

Legend
• Software
• FPGA
• ASIC

Our ASIC
85 ns32X faster

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.
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2.7 us
3.7 us

Implements division-
based algorithm from [1]

Runs at 200MHz while 
[1], [2] run at 2.3GHz

Legend
• Software
• FPGA
• ASIC

Our ASIC
85 ns

41 us

863 ns

Direct FPGA comparison 
to [3]: 48X faster 

ASIC is 480X faster

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.



Takeaways

• XGCD is critical for recent cryptographic applications
• Two-bit PM + CSAs are more promising for hardware

• This approach gives order-of-magnitude better performance
• 30 – 40X faster than software
• 8X faster than state-of-the-art ASIC and first constant-time ASIC

• We plan to tape out these designs in GF12 in September


