A Fast Large-Integer Extended GCD Algorithm and Hardware Design for Verifiable Delay Functions and Modular Inversion

Kavya Sreedhar, Mark Horowitz, Christopher Torng
skavya@stanford.edu

AHA Affiliates Meeting
May 4th, 2022

Cryptography relies on hard problems

- Modern cryptography is based on computationally hard problems
- Typically requiring large-integer arithmetic
- Execution time of problems is critical
- Re-evaluate with algorithmic and hardware advances
- Recent application developments motivate revisiting XGCD

Verifiable delay functions (VDFs) ${ }^{[1]}$

- VDFs require slow evaluation but fast verification
- Require fixed amount of sequential work to be evaluated
- Output a unique result that is still efficiently verifiable
- Computationally hard problem can be a trapdoor function
- $y=f(x)$ is easy to compute
- $x=g(y)$ is difficult to compute without some secret s and $f(s)$
[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Verifiable delay functions (VDFs) ${ }^{[1]}$

- VDFs are increasingly being used in blockchain systems
- The VDF adopted by Chia spends $90+\%$ of execution time on XGCDs
- Inputs are large (1024+ bits) and not secret

Verifiable delays are useful to secure blockchain systems, and their performance determines VDF security levels.
[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Elliptic Curve Cryptography (ECC)

- Used for public key authentication
- Construction has points $(x, y): B y^{2}=x^{3}+A x^{2}+x$
- A, B, x, y can be integers $\bmod p$

Elliptic Curve Cryptography (ECC)

- Computationally hard problem
- Given P, Q on the curve, find $k \in Z$ such that $[k] P=Q$
- Points on curve (x, y) are integers $\bmod p$

Elliptic Curve Cryptography (ECC)

- Most time-consuming operation is modular inversion
- Find x^{-1} such that $x * x^{-1}=1(\bmod p)$
- Since x is secret, this must be constant-time
- Recently, XGCD was found to be the fastest way to do this ${ }^{[2]}$

ECC arithmetic now relies on XGCD, motivating a need for faster XGCD and reconsidering algorithms with many inversions.
[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

Application Summary

[1] Boneh et al. Verifiable delay functions. Crypto 2018.
[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

How fast can one do XGCD?

- GCD is a fundamental operation in number theory and cryptography
- Many algorithms developed in the 1980s/90s
- More recently, software GCD libraries have been highly tuned
- However, few works have implemented extended GCD in hardware

Can we significantly improve XGCD performance with hardware?

XGCD accelerator design space

- Optimal algorithmic choice for hardware
- Large-integer arithmetic circuit optimizations
- Different application requirements

Prior hardware work: Builds from division-based algorithms

Our ASIC design: Builds from subtraction-based algorithms

XGCD accelerator design space

- Optimal algorithmic choice for hardware

Prior hardware work: Directly adds large integers or suggests using carry-save adders

- Large-integer arithmetic circuit optimizations
- Different application requirements

Our ASIC design:
Uses carry-save adders and addresses related challenges

XGCD accelerator design space

- Optimal algorithmic choice for hardware

> | Prior hardware work: |
| :--- |
| provides point |
| solutions targeting an |
| application space |

- Large-integer arithmetic circuit optimizations
- Different application requirements

Our ASIC design:
Can evaluate fast average and constanttime XGCD

Algorithms use GCD-preserving transformations

$$
\begin{gathered}
\boldsymbol{g}=\boldsymbol{g c d}(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{g c d}(\boldsymbol{a}-\boldsymbol{b}, \boldsymbol{b}) \\
a=g * a_{g}, \quad b=g * b_{g}
\end{gathered}
$$

Algorithms use GCD-preserving transformations

Stein $\quad \boldsymbol{g}=\boldsymbol{g c d}(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{g c d}(\boldsymbol{a}-\boldsymbol{b}, \boldsymbol{b})$

$$
\begin{gathered}
a=g * a_{g}, \quad b=g * b_{g} \\
\Rightarrow a-b=g *\left(a_{g}-b_{g}\right) \\
3=\operatorname{gcd}(33,9)=\operatorname{gcd}(24,9)
\end{gathered}
$$

Algorithms use GCD-preserving transformations

Stein

$$
\begin{gathered}
\boldsymbol{g}=\boldsymbol{g c d}(\boldsymbol{a}, \boldsymbol{b})=\boldsymbol{g c d}(\boldsymbol{a}-\boldsymbol{b}, \boldsymbol{b}) \\
a=g * a_{g}, \quad b=g * b_{g} \\
\Rightarrow a-b=g *\left(a_{g}-b_{g}\right) \\
3=\operatorname{gcd}(33,9)=\operatorname{gcd}(24,9)
\end{gathered}
$$

Euclid

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b)
$$

$$
a=g * a_{g}, \quad b=g * b_{g}
$$

$$
\Rightarrow a \bmod b=a-b * q=g *\left(a_{g}-b_{g} * q\right)
$$

$$
3=\operatorname{gcd}(33,9)=\operatorname{gcd}(6,9)
$$

GCD algorithms example $\operatorname{GCD}(27,2)=1$

Euclid

a	b	Operation
27	2	$s t a r t$
2	1	$27 \bmod 2$
1	0	$2 \bmod 1$

GCD algorithms example $\operatorname{GCD}(27,2)=1$

	Euclid		Stein ${ }^{11]}$		
a	b	Operation	a	b	Operation
27	2	start	27	2	start
2	1	$27 \bmod 2$	27	1	b/2
1	0	$2 \bmod 1$	26	1	subtract
			13	1	a / 2
			12	1	subtract
			6	1	a / 2
			3	1	a / 2
			2	1	subtract
			1	1	a / 2
			1	0	subtract

GCD algorithms example $\operatorname{GCD}(27,2)=1$

	Euclid			Stein ${ }^{11]}$		Two-bit Plus-Minus (PM) ${ }^{\text {[2] }}$		
a	b	Operation	a	b	Operation	a	b	Operation
27	2	start	27	2	start	27	2	original a, b
2	1	$27 \bmod 2$	27	1	b / 2	27	1	b/2
1	0	$2 \bmod 1$	26	1	subtract	7	1	$(a+b) / 4$
			13	1	a / 2	2	1	$(a+b) / 4$
			12	1	subtract	1	1	a / 2
			6	1	a/2	1	0	$(\mathrm{a}-\mathrm{b}) / 4$
			3	1	a/2			
			2	1	subtract			
			1	1	a / 2			
			1	0	subtract			

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967.
[2] Yun and Zhang. A fast carry-free algorithm and hardware design for extended integer gcd computation. ACM Symposium on Symbolic and Algebraic Computation 1986.

Extended GCD (XGCD)

- Computes Bézout coefficients satisfying Bézout Identity

$$
\boldsymbol{b}_{\boldsymbol{a}}, \boldsymbol{b}_{\boldsymbol{b}}: \boldsymbol{b}_{\boldsymbol{a}} * a_{0}+\boldsymbol{b}_{\boldsymbol{b}} * b_{0}=\operatorname{gcd}\left(a_{0}, b_{0}\right)
$$

- Maintains these relations each cycle, where $\operatorname{gcd}\left(a_{0}, b_{0}\right)=\operatorname{gcd}(a, b)$

$$
\begin{gathered}
u * a_{0}+m * b_{0}=a \\
y * a_{0}+n * b_{0}=b
\end{gathered}
$$

Which approach is better in hardware?

- Goal: minimize execution time $=$ iteration time $*$ number of iterations

Which approach is better in hardware?

- Goal: minimize execution time $=$ iteration time $*$ number of iterations

- Does the answer change for fast average vs constant-time execution?

Comparing number of iterations

- Worst-case number of iterations for 255 -bit inputs
- Euclid
- Two-bit PM 284] $1 X$

Two-bit PM will be faster

Comparing number of iterations

- Worst-case number of iterations for 255 -bit inputs
- Euclid
$\left.\begin{array}{l}283 \\ 284\end{array}\right] 1 X$
Two-bit PM will be faster
- Average number of iterations for 1024-bit inputs
- Euclid
- Stein
- Two-bit PM
$\left.\left.\begin{array}{l}598 \\ 2163 \\ 1195\end{array}\right] 3.6 \mathrm{X}\right] 2 \mathrm{X}$ Can two-bit PM critical path be 2 X shorter than Euclid's?

Two-bit PM critical path

Two-bit PM critical path

Can be rewritten as

$$
\frac{u+y+3 B}{4}
$$

Two-bit PM critical path

Euclid critical path

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute a $-q * b$

Euclid critical path

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute $\mathrm{a}-q * b$

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

Euclid critical path

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute $\mathrm{a}-q * b$

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

Euclid critical path

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute $\mathrm{a}-q * b$

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

Euclid critical path

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute $\mathrm{a}-q * b$

- Most quotients in Euclid's algorithm are small for 1024-bit inputs
- Can estimate few of the most significant bits of q for faster execution

Euclid critical path

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute $\mathrm{a}-q * b$

Critical paths primarily require additions

- The fastest adder is a carry-save adder (CSA)
- Eliminates carry propagation, requiring $O(1)$ delay
- Stores numbers in CSA form or redundant binary form

$1101(\mathrm{a})$
$+\quad 1111 \quad(\mathrm{~b})$
$0010(\mathrm{c})$
0000

Critical paths primarily require additions

- The fastest adder is a carry-save adder (CSA)
- Eliminates carry propagation, requiring $O(1)$ delay
- Stores numbers in CSA form or redundant binary form

Critical paths primarily require additions

- The fastest adder is a carry-save adder (CSA)
- Eliminates carry propagation, requiring $O(1)$ delay
- Stores numbers in CSA form or redundant binary form

$1101(\mathrm{a})$
$+\quad 1111 \quad(\mathrm{~b})$
$0010(\mathrm{c})$
0000
11110

Critical paths primarily require additions

- The fastest adder is a carry-save adder (CSA)
- Eliminates carry propagation, requiring $O(1)$ delay
- Stores numbers in CSA form or redundant binary form

Two-bit PM with CSAs

Critical path delay is 3 CSA delays

Euclid with CSAs

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute $\mathrm{a}-q * b$

Require 6-bit carry propagate adds to get MSBs of a, b
$\left\lfloor\log _{2}(6)\right\rfloor+1=3$ CSA delays

Euclid with CSAs

Compute $q \leq\left\lfloor\frac{a}{b}\right\rfloor \longrightarrow$ Compute $q * b \longrightarrow$ Compute $\mathrm{a}-q * b$

Need to add 14 values with CSAs

$$
\approx\left\lfloor\log _{3 / 2}(14)\right\rfloor=6 \text { CSA delays }
$$

Two-bit PM is a faster starting point

- Two-bit PM critical path delay estimate is 3 X shorter than Euclid's
- Two-bit PM iteration counts are at most 2 X higher than Euclid's

Two-bit PM with carry-save adders is the more promising starting point for hardware in the average and the worst-case.

We build from the two-bit PM

Two-bit Plus-Minus (PM)		
a b Operation 27 2 original a, b 27 1 $\mathrm{~b} / 2$ 7 1 $(\mathrm{a}+\mathrm{b}) / 4$ 2 1 $(\mathrm{a}+\mathrm{b}) / 4$ 1 1 $\mathrm{a} / 2$ 1 0 $(\mathrm{a}-\mathrm{b}) / 4$		

We extend two-bit PM for XGCD

(A)	$(\mathrm{B}),(\mathrm{C})$ one iteration	$\rightarrow \underset{\text { next iteration }}{(\mathrm{B}),(\mathrm{C})} \rightarrow$	$\bullet \bullet$	loop until termination condition is satisfied	(E)

4 cycles
Execution Time \longrightarrow

Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2)
8 cycles

compute $1 / 8$	
compute $\mathrm{y} / 4$	
compute $4 / 2$	
compute (u+y/4	
compute (u-y)/4	
compute ($\mathrm{u}+\mathrm{b}_{\mathrm{m}}$)/8	
compute ($\mathrm{u}+\mathrm{b}_{\mathrm{m}}$)/4	
compute ($\mathrm{u}+\mathrm{b}_{\mathrm{m}}{ }^{\text {a }}$ /2	
compute ($\mathrm{u}+2 \mathrm{~b}_{\mathrm{m}}$)/8	
compute ($\left.\mathrm{u}+2 \mathrm{~b}_{\mathrm{m}}\right) / 4$	
compute ($\mathrm{u}+3 \mathrm{~b}_{\mathrm{m}}$)/8	next u
compute ($\left.\mathrm{u}+3 \mathrm{~b}_{\mathrm{m}}\right) / 4$	
compute ($\mathrm{u}+4 \mathrm{~b}_{\mathrm{m}}$)/8	u
compute ($\mathrm{u}+5 \mathrm{~b}_{\mathrm{m}}$)/8	
compute ($\left(\mathrm{l}+6 \mathrm{~b}_{\mathrm{m}}\right) / 8$	
compute ($\mathrm{u}+7 \mathrm{~b}_{\mathrm{m}}$)/8	
compute ($\left(\mathrm{u}+\mathrm{y}+\mathrm{b}_{\mathrm{m}}\right) / 4$	
compute $\left(\mathrm{u}-\mathrm{y}+\mathrm{b}_{\mathrm{m}}\right) / 4$	
compute ($\mathrm{u}+\mathrm{y}+2 \mathrm{~b} \mathrm{~m} / 4$	
compute ($\mathrm{u}-\mathrm{y}+2 \mathrm{~b}_{\mathrm{m}} / 4$	
compute ($\mathrm{u}+\mathrm{y}+3 \mathrm{~b} \mathrm{~m} / 4$	
compute ($\mathrm{u}-\mathrm{y}+3 \mathrm{~b} \mathrm{~m}$)/4	

(A)	$(\mathrm{B}),(\mathrm{C})$ one iteration		$(\mathrm{B}),(\mathrm{C})$ next iteration	\rightarrow	$\bullet \bullet \bullet$	loop until termination condition is satisfied (D)	(E)

4 cycles
Execution Time \longrightarrow

(B) Update δ

(A) Pre-processing (D) Control flow

(C) Variable (u, y, m, n, a, b) updates

Critical Path in 16nm

	1024 bits		255 bits	
Operation	Design (1) Delay (ns)	Design (1) (O4 Inv Delay	Design (2) Delay (ns)	Design (2) FO4 Inv Delay
Local clock gating	0.035	3.9	0.018	2
DFF clk to Q	0.040	4.4	0.045	5
Inverter	0	0	0.007	0.8
Add $u+y:$ CSA 1	0.039	4.3	0.018	2
Add $u+y:$ CSA 2	0.039	4.3	0.031	3.4
Buffer	0	0	0.013	1.4
Add $u+y+2 b_{m}$: CSA	0.034	3.8	0.030	3.3
Shift in CSA form	0.018	2	0.015	1.7
Late select multiplexers	0.018	2	0.018	2
Precomputing control	0.022	2.4	0.027	3
Total	0.257	28.6	0.220	24.4

Is three-bit PM faster in hardware?

1024 bits

Max factor of two reduction when a or b is even	Max factor of two reduction when a and b are odd	Average Number of Cycles	Cycle Time (ns)	XGCD execution time (ns)	ASIC area $\left(\mathrm{mm}^{2}\right)$	
	2	2	2210	0.193	427	0.16
Yes, three-bit PM	4	2	1845	0.218	402	0.21
has lowest average	8	2	1740	0.251	437	0.35
execution time	4	4	1450	0.234	339	0.22
	$\mathbf{8}$	4	1211	0.247	299	0.28
	2	$\mathbf{4}$	$\mathbf{1 1 4 3}$	$\mathbf{0 . 2 5 7}$	$\mathbf{2 9 4}$	$\mathbf{0 . 4 1}$

Is three-bit PM faster in hardware?

1024 bits

Constant-time and polynomial extensions

- Constant-time evaluation always runs worst-case number of cycles
- Algorithm keeps dividing 0 by 2 when run for more cycles
- Luckily, CSA form makes it unclear when a, b are 0
- Polynomial XGCD maps integer operations to polynomial ones
- Reducing factors of $2 \Rightarrow$ Reducing factors of x
- Checking evenness $\quad \Rightarrow \quad$ Checking divisibility by x
- Comparing integers $\quad \Rightarrow$ Comparing polynomial degrees

1024-bit Fast Average XGCD Comparisons

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

1024-bit Fast Average XGCD Comparisons

[1] Al-Haija et al. A comparative study up to 1024 bit euclid's gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

255-bit Constant-time XGCD Comparisons

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

255-bit Constant-time XGCD Comparisons

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

255-bit Constant-time XGCD Comparisons

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

Takeaways

- XGCD is critical for recent cryptographic applications
- Two-bit PM + CSAs are more promising for hardware
- This approach gives order-of-magnitude better performance
- 30-40X faster than software
- 8X faster than state-of-the-art ASIC and first constant-time ASIC
- We plan to tape out these designs in GF12 in September

