
A Fast Large-Integer Extended GCD Algorithm
and Hardware Design for Verifiable Delay

Functions and Modular Inversion
Kavya Sreedhar, Mark Horowitz, Christopher Torng

skavya@stanford.edu
AHA Affiliates Meeting

May 4th, 2022

mailto:skavya@stanford.edu

Cryptography relies on hard problems

• Modern cryptography is based on computationally hard problems
• Typically requiring large-integer arithmetic

• Execution time of problems is critical
• Re-evaluate with algorithmic and hardware advances

• Recent application developments motivate revisiting XGCD

Verifiable delay functions (VDFs) [1]

• VDFs require slow evaluation but fast verification
• Require fixed amount of sequential work to be evaluated
• Output a unique result that is still efficiently verifiable

• Computationally hard problem can be a trapdoor function
• 𝑦 = 𝑓(𝑥) is easy to compute
• 𝑥 = 𝑔(𝑦) is difficult to compute without some secret 𝑠 and 𝑓 𝑠

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Verifiable delay functions (VDFs) [1]

• VDFs are increasingly being used in blockchain systems

• The VDF adopted by Chia spends 90+% of execution time on XGCDs
• Inputs are large (1024+ bits) and not secret

Verifiable delays are useful to secure blockchain systems, and their
performance determines VDF security levels.

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

𝑃 = (𝑥!, 𝑦!)

𝑄 = (𝑥", 𝑦")

• Used for public key authentication

• Construction has points 𝑥, 𝑦 ∶ 𝐵𝑦! = 𝑥" + 𝐴𝑥! + 𝑥
• 𝐴, 𝐵, 𝑥, 𝑦 can be integers mod 𝑝

Elliptic Curve Cryptography (ECC)

𝐴 𝐵

𝐶

• Computationally hard problem
• Given 𝑃, 𝑄 on the curve, find 𝑘 ∈ 𝑍 such that 𝑘 𝑃 = 𝑄
• Points on curve (𝑥, 𝑦) are integers mod 𝑝

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC)

• Most time-consuming operation is modular inversion
• Find 𝑥#$ such that 𝑥 ∗ 𝑥#$ = 1 𝑚𝑜𝑑 𝑝
• Since 𝑥 is secret, this must be constant-time

• Recently, XGCD was found to be the fastest way to do this [2]

ECC arithmetic now relies on XGCD, motivating a need for faster XGCD
and reconsidering algorithms with many inversions.

[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

Application Summary

Verifiable Delay
Functions (VDFs)

Modular Inversion
for Elliptic

Curve25519

Extended GCD (XGCD)

Non-
constant-

time

Constant-
time

1024-bit XGCD
91% of execution time

255-bit XGCD
100% of execution time

2018 [1] 2021 [2]

[1] Boneh et al. Verifiable delay functions. Crypto 2018.
[2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

How fast can one do XGCD?

• GCD is a fundamental operation in number theory and cryptography
• Many algorithms developed in the 1980s/90s
• More recently, software GCD libraries have been highly tuned

• However, few works have implemented extended GCD in hardware

Can we significantly improve XGCD performance with hardware?

XGCD accelerator design space

• Optimal algorithmic choice for hardware

• Large-integer arithmetic circuit optimizations

• Different application requirements

Prior hardware work:
Builds from

division-based
algorithms

Our ASIC design:
Builds from

subtraction-based
algorithms

XGCD accelerator design space

• Optimal algorithmic choice for hardware

• Large-integer arithmetic circuit optimizations

• Different application requirements

Prior hardware work:
Directly adds large

integers or suggests
using carry-save adders

Our ASIC design:
Uses carry-save adders
and addresses related

challenges

XGCD accelerator design space

• Optimal algorithmic choice for hardware

• Large-integer arithmetic circuit optimizations

• Different application requirements

Prior hardware work:
provides point

solutions targeting an
application space

Our ASIC design:
Can evaluate fast

average and constant-
time XGCD

Algorithms use GCD-preserving transformations

𝒈 = 𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂 − 𝒃, 𝒃)
𝑎 = 𝑔 ∗ 𝑎% , 𝑏 = 𝑔 ∗ 𝑏%

Algorithms use GCD-preserving transformations

𝒈 = 𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂 − 𝒃, 𝒃)
𝑎 = 𝑔 ∗ 𝑎% , 𝑏 = 𝑔 ∗ 𝑏%
⇒ 𝑎 − 𝑏 = 𝑔 ∗ (𝑎% − 𝑏%)

3 = 𝑔𝑐𝑑 33, 9 = 𝑔𝑐𝑑(24, 9)

Stein

Algorithms use GCD-preserving transformations

𝒈 = 𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂 − 𝒃, 𝒃)
𝑎 = 𝑔 ∗ 𝑎% , 𝑏 = 𝑔 ∗ 𝑏%
⇒ 𝑎 − 𝑏 = 𝑔 ∗ (𝑎% − 𝑏%)

3 = 𝑔𝑐𝑑 33, 9 = 𝑔𝑐𝑑(24, 9)

𝒈𝒄𝒅 𝒂, 𝒃 = 𝒈𝒄𝒅(𝒂𝒎𝒐𝒅 𝒃, 𝒃)
𝑎 = 𝑔 ∗ 𝑎% , 𝑏 = 𝑔 ∗ 𝑏%

⇒ 𝑎 𝑚𝑜𝑑 𝑏 = 𝑎 − 𝑏 ∗ 𝑞 = 𝑔 ∗ (𝑎% − 𝑏% ∗ 𝑞)
3 = 𝑔𝑐𝑑 33, 9 = 𝑔𝑐𝑑(6, 9)

Stein

Euclid

GCD algorithms example 𝐺𝐶𝐷 27,2 = 1

a b Operation
27 2 start
2 1 27 mod 2
1 0 2 mod 1

Euclid

GCD algorithms example 𝐺𝐶𝐷 27,2 = 1

a b Operation
27 2 start
2 1 27 mod 2
1 0 2 mod 1

Euclid
a b Operation
27 2 start
27 1 b / 2
26 1 subtract
13 1 a / 2
12 1 subtract
6 1 a / 2
3 1 a / 2
2 1 subtract
1 1 a / 2
1 0 subtract

Stein [1]

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967

GCD algorithms example 𝐺𝐶𝐷 27,2 = 1

a b Operation
27 2 start
2 1 27 mod 2
1 0 2 mod 1

Euclid
a b Operation
27 2 start
27 1 b / 2
26 1 subtract
13 1 a / 2
12 1 subtract
6 1 a / 2
3 1 a / 2
2 1 subtract
1 1 a / 2
1 0 subtract

Stein [1]

a b Operation
27 2 original a, b
27 1 b / 2
7 1 (a + b) / 4
2 1 (a + b) / 4
1 1 a / 2
1 0 (a – b) / 4

Two-bit Plus-Minus (PM) [2]

[1] Josef Stein. Computational problems associated with Racah Algebra. Journal of Computational Physics 1967.
[2] Yun and Zhang. A fast carry-free algorithm and hardware design for extended integer gcd computation. ACM Symposium on Symbolic and
Algebraic Computation 1986.

Extended GCD (XGCD)

• Computes Bézout coefficients satisfying Bézout Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎(+ 𝒃𝒃 ∗ 𝑏(= gcd 𝑎(, 𝑏(

• Maintains these relations each cycle, where gcd 𝑎(, 𝑏(= gcd(𝑎, 𝑏)

𝑢 ∗ 𝑎(+𝑚 ∗ 𝑏(= 𝑎
𝑦 ∗ 𝑎(+ 𝑛 ∗ 𝑏(= 𝑏

Which approach is better in hardware?

• Goal: minimize execution time = iteration time ∗ number of iterations

Which approach is better in hardware?

• Goal: minimize execution time = iteration time ∗ number of iterations

• Does the answer change for fast average vs constant-time execution?

cycle time ∗ number of cycles

Comparing number of iterations

• Worst-case number of iterations for 255-bit inputs
• Euclid 283
• Two-bit PM 284 1X Two-bit PM will be faster

• Worst-case number of iterations for 255-bit inputs
• Euclid 283
• Two-bit PM 284

• Average number of iterations for 1024-bit inputs
• Euclid 598
• Stein 2163
• Two-bit PM 1195

Comparing number of iterations

3.6X 2X

1X Two-bit PM will be faster

Can two-bit PM critical path
be 2X shorter than Euclid’s?

Two-bit PM critical path 𝑢 + 𝑦 + 𝐵
2 + 𝐵
2𝑢 + 𝑦 + 𝐵

2

𝑢 + 𝑦
2

𝑢 + 𝑦

𝑢 + 𝑦 + 𝐵
4

𝑢 + 𝑦
2 + 𝐵
2

𝑢 + 𝑦
4

If odd

If odd

If odd

If even

If even

If even

Two-bit PM critical path 𝑢 + 𝑦 + 𝐵
2 + 𝐵
2𝑢 + 𝑦 + 𝐵

2

𝑢 + 𝑦

If odd

If odd

𝑢 + 𝑦 + 3𝐵
4

Can be rewritten as

Two-bit PM critical path 𝑢 + 𝑦 + 3𝐵
4𝑢 + 𝑦 + 𝐵

2

𝑢 + 𝑦
2

𝑢 + 𝑦

𝑢 + 𝑦 + 𝐵
4

𝑢 + 𝑦 + 2𝐵
4

𝑢 + 𝑦
4

If odd

If odd

If odd

If even

If even

If even

Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏Compute 𝑞 ≤ ⌊!
"
⌋

Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

Compute 𝑞 ≤ ⌊!
"
⌋

Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞

Multiplier
𝑏 ∗ 𝑞 5 ≪ 5
𝑏 ∗ 𝑞 4 ≪ 4
𝑏 ∗ 𝑞 3 ≪ 3
𝑏 ∗ 𝑞 2 ≪ 2
𝑏 ∗ 𝑞 1 ≪ 1
𝑏 ∗ 𝑞 0

+
𝑞 ∗ 𝑏

6

6

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

Compute 𝑞 ≤ ⌊!
"
⌋

𝑏

Multiplier

Euclid critical path

Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞

𝑞 ∗ 𝑏
6

6

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

Compute 𝑞 ≤ ⌊!
"
⌋

+

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

𝑏

Multiplier

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞

𝑞 ∗ 𝑏
6

6 𝑎 − 𝑞 ∗ 𝑏

• Most quotients in Euclid’s algorithm are small for 1024-bit inputs
• Can estimate few of the most significant bits of 𝑞 for faster execution

+

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

+

𝑎

𝑏

Computing the remainder

Euclid critical path

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0
𝑎

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏

Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

+

Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

+

carry

Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

++

Critical paths primarily require additions

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

a
CSA

xsum
xcarryb

c
Add

x = xsum + xcarry = a + b + c

Two-bit PM with CSAs

𝑢𝑠𝑢𝑚
CSA

CSA

𝑥𝑠𝑢𝑚
𝑥𝑐𝑎𝑟𝑟𝑦

𝑧𝑠𝑢𝑚
𝑧𝑐𝑎𝑟𝑟𝑦 CSA

𝑢𝑐𝑎𝑟𝑟𝑦
𝑦𝑠𝑢𝑚
𝑦𝑐𝑎𝑟𝑟𝑦
3𝐵

𝑢 + 𝑦 + 3𝐵
4

Critical path delay is 3 CSA delays

𝑟𝑠𝑢𝑚
𝑟𝑐𝑎𝑟𝑟𝑦

Euclid with CSAs

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

𝑏

𝑎

Require 6-bit carry propagate
adds to get MSBs of 𝑎, 𝑏

log# 6 + 1 = 3 CSA delays

Euclid with CSAs

Compute 𝑞 ≤ ⌊!
"
⌋ Compute 𝑞 ∗ 𝑏 Compute a − 𝑞 ∗ 𝑏

Computing the remainder
𝑎
𝑏

Get 6
MSBs

LUT
𝑞6

6

+𝑏

𝑏 ≪ 5 𝑜𝑟 0
𝑏 ≪ 4 𝑜𝑟 0
𝑏 ≪ 3 𝑜𝑟 0
𝑏 ≪ 2 𝑜𝑟 0
𝑏 ≪ 1 𝑜𝑟 0
𝑏 𝑜𝑟 0

Multiplier

𝑎

𝑎 − 𝑞 ∗ 𝑏

Require 6-bit carry propagate
adds to get MSBs of 𝑎, 𝑏

log# 6 + 1 = 3 CSA delays Need to add 14 values with CSAs
≈ log$/# 14 = 6 CSA delays

𝑎

Two-bit PM is a faster starting point

• Two-bit PM critical path delay estimate is 3X shorter than Euclid’s
• Two-bit PM iteration counts are at most 2X higher than Euclid’s

Two-bit PM with carry-save adders is the more promising starting
point for hardware in the average and the worst-case.

We build from the two-bit PM

a b Operation
27 2 original a, b
27 1 b / 2
7 1 (a + b) / 4
2 1 (a + b) / 4
1 1 a / 2
1 0 (a – b) / 4

Two-bit Plus-Minus (PM) 𝑎
4
𝑎
2

𝑎 + 𝑏
4

𝑎 − 𝑏
4
𝑎

next 𝑎

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

We extend two-bit PM for XGCD

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Pre- and post-processing run at
¼ main clock frequency for

carry-propagate adds

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Termination condition samples
𝑎, 𝑏 every four cycles

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow
Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Preserve sign and correct
truncated results when

shifting in CSA form

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Minimize control overhead
• Compute update options in

parallel and use late selects
• Precompute control signals

Pre-processing Iterations Loop (each iteration completes in one clock cycle) Post-processing

u

a
b

y
m
n

ADD

ADD

ADD

ADD

c[MSB]

am[0]
bm[0] Control

NEGATE
if a+b < 0

a+b

ba

gcd

bb

(B),(C)
one iteration

(E)loop until termination condition is satisfied
(D)

(B) Update �

(E) Post-processing (C) Variable (u, y, m, n, a, b) updates

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

compute

Execution Time

(u-y+3bm) 4

u 8
>> 3

u y m n ba

Note that all shifts are in CSA form (Section 4.2.1)

u input to mux

u

4 cycles Worst-case 1548 cycles for Design (1) and 386 cycles for Design (2) 8 cycles

y
3bm

5 inputs with u,y in CSA form:
need 3 CSAs

CSA CSA CSA >> 2 input
to mux

u
bm

3 inputs with u in CSA form:
need 1 CSA

CSA >> 1 input to mux

u
y

4 inputs with u,y in CSA form:
need 2 CSAs

CSA CSA >> 2 input to mux

- All these variables are registered and
 updated every clock cycle
- The logic for updating u is shown
- Similar logic is used for updating y, m, n,
 with -am substituted for +bm for m, n
- The logic in just the first five update options
 is used for updating a, b

u 4

u 2

4(u-y)

4(u+y)

(u+bm)

2

4

8

(u+bm)

(u+bm)

(u+2bm)

4

8

(u+2bm)compute

(u+3bm)

4

8

(u+3bm)

(u+4bm) 8

(u+5bm) 8

(u+6bm) 8

(u+7bm) 8

(u+y+3bm) 4

(u-y+2bm) 4

(u+y+2bm) 4

(u-y+bm)

(u+y+bm) 4

4

next u

(A) (B),(C)
next iteration

u

3
2
1

-3
-2
-1

�

�[MSB]

a[0]
b[0] Control

ADD

�

next �

(D) Control flow

Iterations Loop

Post-processing

Constant-time: check if
 cycle count is equal to worst-case
Otherwise: check if
 a == 0 or b == 0

If True

If False

a0
b0

a0 + b0

ADD

am

bm

a0[0]

b0[0]

<< 1

ADD

2am

3am

- Higher multiples of am
 are similarly calculated
 - 4am: shift am by 2
 - 5am: 2am + 3am
 - 6am: 4am + 2am
 - 7am: 4am + 3am
- Similar logic calculates
 multiples of bm

(A) Pre-processing

Critical Path

XGCD Accelerator Execution Flow

Critical Path in 16nm
1024 bits 255 bits

Is three-bit PM faster in hardware?

Yes, three-bit PM
has lowest average

execution time

1024 bits

Is three-bit PM faster in hardware?

No, all these
cases have same

worst-case
execution time.

1024 bits

For constant-time

Constant-time and polynomial extensions

• Constant-time evaluation always runs worst-case number of cycles
• Algorithm keeps dividing 0 by 2 when run for more cycles
• Luckily, CSA form makes it unclear when 𝑎, 𝑏 are 0

• Polynomial XGCD maps integer operations to polynomial ones
• Reducing factors of 2 ⇒ Reducing factors of 𝑥
• Checking evenness ⇒ Checking divisibility by 𝑥
• Comparing integers ⇒ Comparing polynomial degrees

1024-bit Fast Average XGCD Comparisons

[1]
[2] [3]

1

10

100

1000

10000

100000

0.01 0.1 1 10

Av
er

ag
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)
[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

Legend
• Software
• FPGA
• ASIC

Our ASIC

Our ASIC

1024-bit Fast Average XGCD Comparisons

[1]
[2] [3]

1

10

100

1000

10000

100000

0.01 0.1 1 10

Av
er

ag
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

Software
Benchmark with

GNU XGCD C++ on
Apple M1 (5nm)

10.7 us

Legend
• Software
• FPGA
• ASIC

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

Our ASIC

Our ASIC

1024-bit Fast Average XGCD Comparisons

[1]
[2] [3]

1

10

100

1000

10000

100000

0.01 0.1 1 10

Av
er

ag
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

Software
Benchmark with

GNU XGCD C++ on
Apple M1 (5nm)

10.7 us

Legend
• Software
• FPGA
• ASIC

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

6 us1.8X faster

Our ASIC

1024-bit Fast Average XGCD Comparisons

[1]
[2] [3]

1

10

100

1000

10000

100000

0.01 0.1 1 10

Av
er

ag
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

10.7 us

Legend
• Software
• FPGA
• ASIC

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

6 us
20X faster

Builds from Euclid’s
algorithm and has

higher cycle counts

294 ns
Our ASIC

1024-bit Fast Average XGCD Comparisons

[1]
[2] [3]

1

10

100

1000

10000

100000

0.01 0.1 1 10

Av
er

ag
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

10.7 us

Legend
• Software
• FPGA
• ASIC

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

6 us
36X faster

294 ns
Our ASIC

Software
Benchmark with

GNU XGCD C++ on
Apple M1 (5nm)

1024-bit Fast Average XGCD Comparisons

[1]
[2] [3]

1

10

100

1000

10000

100000

0.01 0.1 1 10

Av
er

ag
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

Directly implements
Euclid’s algorithm 10.7 us

Legend
• Software
• FPGA
• ASIC

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

6 us

Run at 40MHz, while
M1 runs at GHz

294 ns

15 us

Our ASIC

[1]
[2] [3]

1

10

100

1000

10000

100000

0.01 0.1 1 10

Av
er

ag
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

1024-bit Fast Average XGCD Comparisons
Directly implements

Euclid’s algorithm 10.7 us

Legend
• Software
• FPGA
• ASIC

[1] Al-Haija et al. A comparative study up to 1024 bit euclid’s gcd algorithm fpga implementation and synthesizing. ICEDSA 2016.
[2] Zhu et al. Low-latency architecture for the parallel extended GCD algorithm of large numbers. ISCAS 2021.
[3] Zhu et al. An efficient accelerator of the squaring for the verifiable delay function over a class group. APCCAS 2020.

6 us

294 ns

4.6 us

15 us
3X faster 51X faster

Our ASIC

[1]

[2]

[3]

1

10

100

1000

10000

100000

0.1 1 10W
or

st
-c

as
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

255-bit Constant-time XGCD Comparisons

Legend
• Software
• FPGA
• ASIC

Our ASIC

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

[1]

[2]

[3]

1

10

100

1000

10000

100000

0.1 1 10W
or

st
-c

as
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

255-bit Constant-time XGCD Comparisons

2.7 us
3.7 us

State-of-the-art
software implements

Stein’s algorithm

Legend
• Software
• FPGA
• ASIC

Our ASIC
85 ns32X faster

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

[1]

[2]

[3]

1

10

100

1000

10000

100000

0.1 1 10W
or

st
-c

as
e

Cy
cl

e
Co

un
t

Clock Frequency (GHz)

255-bit Constant-time XGCD Comparisons

2.7 us
3.7 us

Implements division-
based algorithm from [1]

Runs at 200MHz while
[1], [2] run at 2.3GHz

Legend
• Software
• FPGA
• ASIC

Our ASIC
85 ns

41 us

863 ns

Direct FPGA comparison
to [3]: 48X faster

ASIC is 480X faster

[1] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.
[2] Pornin. Optimized binary gcd for modular inversion. Cryptology ePrint Archive 2020.
[3] Deshpande et al. Modular inverse for integers using fast constant time gcd algorithm and its applications. FPL 2021.

Takeaways

• XGCD is critical for recent cryptographic applications
• Two-bit PM + CSAs are more promising for hardware

• This approach gives order-of-magnitude better performance
• 30 – 40X faster than software
• 8X faster than state-of-the-art ASIC and first constant-time ASIC

• We plan to tape out these designs in GF12 in September

