


Bringing Source-Level Debugging 
Frameworks to Hardware Generators

Keyi Zhang, Zain Asgar, Mark Horowitz

Computer Science Department

Stanford University



The Good, the Bad and the Ugly

• The Good:
• Huge leaps in front-end design tools productivity

• Hardware generator frameworks embedded in a host programming languages, such as Chisel

• High level synthesis tools that turn C/C++ into RTL

• More software-oriented concepts/constructs
• Object-oriented programming

• Functional programming

• Software/hardware co-design



The Good, the Bad and the Ugly

• The Good:
• Huge leaps in front-end design tools productivity

• Hardware generator frameworks embedded in a host programming languages, such as Chisel

• High level synthesis tools that turn C/C++ into RTL

• More software-oriented and constructs
• Object-oriented programming

• Functional programming

• Software/hardware co-design

Chisel code for RocketChip



The Good, the Bad and the Ugly

• The Bad and the Ugly:
• Generated RTL is obfuscated due to compiler optimizations

• Low-level RTL

• Loses designer intent

• Verification has to be done at RTL level for integration tests

• Productivity gain from front-end design is lost in verification



The Good, the Bad and the Ugly

• The Bad and the Ugly:
• Generated RTL is obfuscated due to compiler optimizations

• Low-level RTL

• Loses designer intent

• Verification has to be done at RTL level for integration tests

• Productivity gain from front-end design losses on verification

Generated RTL from the code shown before



Introducing hgdb

• Source-level debugging

• Minimal performance overhead

• No RTL changes required

• Two complete debuggers
• VSCode

• gdb-inspired console debugger

• All major simulators
• Big 3

• Verilator

• iverilog

• FSDB and VCD Replay
• Reverse debugging!



System design



Low overhead breakpoint emulation



Low overhead breakpoint emulation



Low overhead breakpoint emulation



Emulate with correct semantics

data 1 2

3 4

sum 4

i 4

Stack frame:



SSA and loop unrolling to rescue

• Insight:
• Static single assignment (SSA) and loop unrolling are commonly used in compiler 

optimization.

• Use these transformation artifacts to help debugging.



SSA and loop unrolling to rescue

Original Code



SSA and loop unrolling to rescue

Code after loop unrolling



Code after Single-Static-Assignment transformation

SSA and loop unrolling to rescue



Breakpoint emulation with SSA

One to many mapping due to loop unrolling



Breakpoint emulation with SSA

Use SSA mapping to construct stack frame

data 1 2

3 4

sum ⬅ sum0 0

Stack frame



Breakpoint emulation with SSA

Use SSA mapping to construct stack frame

data 1 2

3 4

sum ⬅ sum1 1

Stack frame



Breakpoint emulation with SSA

Use SSA mapping to construct stack frame

data 1 2

3 4

sum ⬅ sum2 1

Stack frame



Breakpoint emulation with SSA

Use SSA mapping to construct stack frame

data 1 2

3 4

sum ⬅ sum3 4

Stack frame



Breakpoint emulation with SSA

Storing static values into symbol table when unrolling the loop

data 1 2

3 4

sum ⬅ sum0 0

i 0

Stack frame



Breakpoint emulation with SSA

Storing static values into symbol table when unrolling the loop

data 1 2

3 4

sum ⬅ sum1 1

i 1

Stack frame



Breakpoint emulation with SSA

Storing static values into symbol table when unrolling the loop

data 1 2

3 4

sum ⬅ sum2 1

i 2

Stack frame



Breakpoint emulation with SSA

Storing static values into symbol table when unrolling the loop

data 1 2

3 4

sum ⬅ sum3 4

i 3

Stack frame



Breakpoint emulation with SSA

Using SSA transformation to compute “enable condition”

data[0] % 2



Breakpoint emulation with SSA

Using SSA transformation to compute “enable condition”

data[1] % 2



Breakpoint emulation with SSA

Using SSA transformation to compute “enable condition”

data[2] % 2



Breakpoint emulation with SSA

Using SSA transformation to compute “enable condition”

data[3] % 2



Breakpoint emulation with SSA

Put everything together: only two breakpoints are enabled

data 1 2

3 4

sum ⬅ sum0 0

i 0

Stack frame



Breakpoint emulation with SSA

data 1 2

3 4

sum ⬅ sum2 1

i 2

Stack frame

Put everything together: only two breakpoints are enabled



Breakpoint emulation loop

@ (posedge clk)

Fetch next bps

Evaluate bps in parallel

Has any bp hit
Yes

Send bps to users
No

Done

*Reverse time



Breakpoint emulation loop

@ (posedge clk)

Fetch next bps

Evaluate bps in parallel

Has any bp hit
Yes

Send bps to users
No

Done

*Reverse time

src.cpp:10

src.cpp:11

src.cpp:12

src.cpp:13

L
e
xic

a
l o

rd
e
rin

g
 o

f b
re

a
k
p

o
in

ts



Breakpoint emulation loop

@ (posedge clk)

Fetch next bps

Evaluate bps in parallel

Has any bp hit
Yes

Send bps to users
No

Done

*Reverse time

src.cpp:10

src.cpp:11

src.cpp:12

src.cpp:13

R
e
ve

rs
e
d

 le
xic

a
l o

rd
e
rin

g

Intra-cycle reverse debugging



Breakpoint emulation loop

@ (posedge clk)

Fetch next bps

Evaluate bps in parallel

Has any bp hit
Yes

Send bps to users
No

Done

*Reverse time

src.cpp:10

src.cpp:11

src.cpp:12

src.cpp:13

R
e
ve

rs
e
d

 le
xic

a
l o

rd
e
rin

g

Inter-cycle reverse debugging



Unified simulator interface

Primitives:

▪ Place callback on value change

▪ Get signal values

▪ Get design hierarchy

▪ Reverse time (optional)



Unified simulator interface

Primitives:

▪ Get breakpoints from source location

▪ Get scope and instance information for 

each breakpoint

▪ Resolve scoped variable names to full 

name

▪ Resolve instance variable names to full 

name



Hgdb debuggers

Visual Studio Code Terminal based



Hgdb debuggers

Visual Studio Code Terminal based



Integration with hardware generators

MLIR/CIRCTChisel/Firrtl Vitis HLS



Working with Firrtl compiler

• First pass:
• Insert annotation and compute enable 

condition
• (Debug mode) insert DontTouchAnnotation

• Second pass:
• Collect annotations and only compute 

symbol table if the IRNode still exists



Performance evaluation

• Rocketchip built-in benchmark

• Debug mode refers to passes 
disable compiler optimization

• 5% performance overhead



Conclusion

• Hardware generators are new, and debugging infrastructure is missing

• Hgdb connects hardware generator frameworks and existing simulators
• Works with all major simulator vendors

• Brings source level debugging

• Hgdb is an open-source framework from Stanford AHA! center
• Contributions are welcome!

https://github.com/Kuree/hgdb


