
Deegen: a Meta-compiler Approach for High 
Performance VMs at Low Engineering Cost

Stanford University

Haoran Xu    
haoranxu@stanford.edu

Fredrik Kjolstad
kjolstad@cs.stanford.edu

mailto:haoranxu@stanford.edu
mailto:kjolstad@cs.stanford.edu


Dynamic Languages

● JavaScript, Python, PHP, Ruby, Lua, many more…
● High productivity thanks to dynamic typing. 
● But also poor runtime performance on a naive VM implementation.
● And building a good VM is hard… 



What does the state-of-the-arts do?

● To get a state-of-the-art VM…
● Need an interpreter.

              optimized interpreter

   multi-tier JIT compiler
● Need a JIT compiler.

          
● Compilation happens at runtime, so compilation time matters!

○ Baseline JIT: generate code fast
○ Optimizing JIT: generate fast code

          



What does the state-of-the-art do?

Heavyweight 
Opt. JIT FTL

Lightweight 
Opt. JIT DFG

Baseline JIT

tier-up

tier-up OSR-exit

Interpreter
LLInt

OSR
exit

tier-up

JavaScriptCore 
(in Safari)

Optimizing JIT
TurboFan

Baseline JIT
Sparkplug

tier-up OSR-exit

Interpreter
Ignition

tier-up

V8 
(in Chrome)

Optimizing JIT
WarpMonkey

Baseline JIT

tier-up OSR-exit

Interpreter

tier-up

SpiderMonkey 
(in Firefox)

* OSR-exit: the process of bailing out from speculatively optimized JIT’ed code and 
fallback to interpreter / generic JIT’ed code, also known as deoptimization



But… what does it cost?



But… what does it cost?
● Optimized interpreter 

○ Handroll assembly

● Baseline JIT
○ Handroll assembly 
○ Handroll assembler 
○ Tier-up logic

● Optimizing JIT
○ Handroll assembly
○ Handroll assmbler 
○ Tier-up logic 
○ OSR-exit logic 
○ Optimization pipeline

Huge engineering cost
     (V8/JSC: US $100M+)
Lots of code duplication 
     (across tiers and across architectures)
Subtle VM bugs 
     (and JIT bugs are notoriously exploitable)
High dev. expertise requirement



But wait a minute…
● Optimized interpreter 

○ Handroll assembly

● Baseline JIT
○ Handroll assembly 
○ Handroll assembler 
○ Tier-up logic

● Optimizing JIT
○ Handroll assembly
○ Handroll assmbler 
○ Tier-up logic 
○ OSR-exit logic 
○ Optimization pipeline

LLVM can generate assembly 

LLVM can generate machine code from assembly

So can we replace the handrolled parts with LLVM?



So… Can we use LLVM in dynamic language VMs?

● Obviously, I’m not the first to have this idea
○ Unladen Swallow (for Python, inactive since 2010)

○ Rubinius (for Ruby, inactive since 2020)

○ LLVMLua (for Lua, inactive since 2012)

○ …
● Many attempts, but limited outreach to mainstream use
● Why?



Quoted from Unladen Swallow Retrospective 

link: https://qinsb.blogspot.com/2011/03/unladen-swallow-retrospective.html

high compilation cost

no support for
dynamic-type-related opts.

Post-mortem by one of the main Unladen Swallow developers:

no support for 
inline caching 

code duplication
➜ maintenance cost to 
keep tiers in sync

(into official CPython)

https://qinsb.blogspot.com/2011/03/unladen-swallow-retrospective.html


The Problems with LLVM

● LLVM produces good code, but compilation is slow, terribly slow
○ But for a JIT, fast compilation is critical 

Even worse, some are 
fundamentally undoable at 
LLVM IR level without major 
changes to LLVM!

● No direct support for the important domain-specific optimizations
○ Inline Caching / Self-Modifying Code (dynamic patching)

○ Dynamic Type Related Optimization
○ Hot-cold Splitting
○ Tiering-up / OSR-Exit
○ …

● Cannot fully solve the engineering cost & code duplication problem
○ Still need to write interpreter in assembly for best performance
○ Still need to manually implement each JIT tier using LLVM APIs
○ Still need to keep all tiers in sync



An Ideal Dynamic Language VM Should Have…

Fast JIT Compilation

Dynamic Language
Specific Optimizations

No Code Duplication

Low Engineering Cost

High Runtime Performance

Low Maintenance Cost

Low Engineering Cost



An Ideal Dynamic Language VM Should Have…

State-of-the-Art VM
(JSC/V8/SpiderMonkey…)

Fast JIT Compilation ✅
Dynamic Language
Specific Optimizations ✅

No Code Duplication ❌
Low Engineering Cost ❌



An Ideal Dynamic Language VM Should Have…

State-of-the-Art VM
(JSC/V8/SpiderMonkey…)

LLVM-based VM

Fast JIT Compilation ✅ ❌
Dynamic Language
Specific Optimizations ✅ ❌

No Code Duplication ❌ ⭕
Low Engineering Cost ❌ ⭕

* I am aware of prior meta-VM approaches like Truffle or PyPy. I don’t have the time to cover 
them in this talk, but I’m sure you will reach your conclusion after the talk :)



An Ideal Dynamic Language VM Should Have…

State-of-the-Art VM
(JSC/V8/SpiderMonkey…)

LLVM-based VM VM Generated 
By Deegen

Fast JIT Compilation ✅ ❌ ✅
Dynamic Language
Specific Optimizations ✅ ❌ ⭕

No Code Duplication ❌ ⭕ ✅
Low Engineering Cost ❌ ⭕ ✅

[note]

[Note]: We are in the progress of implementing more and more optimizations for 
Deegen, so that we can eventually turn the ⭕ into a proud ✅ in the future :)



Deegen’s Core Idea

● Use LLVM at build time to automatically generate the VM 
○ Enjoy the benefits of LLVM, not its slowness
○ At runtime, generated JIT uses Copy-and-Patch to generate machine code

● All VM tiers generated from a single source of truth (bytecode semantics in C++)

○ High-performance VM with low engineering cost
○ No more code duplication, VM tiers automatically in sync

● Exotic domain-specific optimizations done via ASM-level transform 
○ However, only reorder and remove assembly basic blocks

○ So Deegen only needs bare minimal ASM knowledge (jump instructions only)

○ Transparent to language implementers, happens at build time



Deegen’s Vision and Current State

Bytecode Semantic 
Description in C++
(single source of truth)

At build time, 
Deegen takes as input

DONE

DONE

IN PROGRESS

FAR FUTURE

(if possible at all)

Heavyweight 
Optimizing JIT

Lightweight 
Optimizing JIT

Baseline JIT

tier-up

tier-up OSR-exit

Optimized Interpreter

OSR
exit

tier-up

Ultimate Goal 
JavaScriptCore-like 
four-tier architecture

automatically generates



Evaluating Deegen in Practice

● Use Deegen to generate a VM for a dynamic language!
● First target: Lua
● Why Lua?

○ Industrial language with many real use cases
○ Supports almost any dynamic language features you can find

■ Including exotic ones like stackful coroutines

○ Nevertheless, small and simple
○ LuaJIT: natural friend (to reuse components) and rival (to outperform!)



LuaJIT Remake

● Standard-compliant VM for Lua 5.1
● Reuses several LuaJIT components

○ Frontend lexer & parser
○ Bytecode generator (Lua code ⇨ Bytecode)

● Bytecode execution engine generated automatically by Deegen
○ Optimized interpreter
○ Baseline JIT compiler

● VM design not identical
○ Most importantly, we have inline caching optimization (powered by Deegen)



Interpreter Performance (No-JIT mode)

● LJR interpreter outperforms LuaJIT interpreter on 39/44 benchmarks
● Avg: 31% faster than LuaJIT interpreter, 179% faster than PUC Lua

PUC Lua Performance normalized to 1



Baseline JIT Startup Delay

● Baseline JIT
○ 1st priority: generate code fast
○ 2nd priority: generate fast code

● Startup delay: How fast can the JIT generate code?
● Average throughput over 44 benchmarks:

○ 1.62GB/s machine code generated (single-threaded)
○ 19.1M/s Lua bytecode processed (single-threaded)

● Fair to claim that startup delay is negligble
● However, still want interpreter, because of memory overhead

○ On average, 91 bytes machine code per Lua bytecode



Baseline JIT Execution Performance

● Baseline JIT vs Optimizing JIT: unfair comparison
● However, LJR still managed to outperform LuaJIT on 13/44 benchmarks
● Avg: 34% slower than LuaJIT, 360% faster than PUC Lua

PUC Lua Performance normalized to 1



Bytecode Semantic Definition Example

Deegen API Defined by user, but understood by Deegen



Bytecode Semantic Definition Example, Continued

Arbitrary runtime call,
not understood by Deegen

Deegen API
Control transfers to continuation 
functor when call returns



Bytecode Specification Language

Deegen understands the type system,
and will do optimizations using this info

Also supports static quickening
based on type assumption (not shown)



User-Friendly Bytecode Builder API



Actual
Disassembly 
of AddVV 
bytecode



The Baseline JIT Tier

● Completely free for a language implementer:
○ No additional input required.
○ Everything generated automatically from the bytecode semantics.

● Features:
○ Extremely fast compilation speed
○ Good machine code quality (under design constraints of baseline JIT)
○ Almost all optimizations used in JavaScriptCore’s baseline JIT



The Baseline JIT Tier

● Generated automatically via a sophiscated build-time pipeline



The Baseline JIT Tier

● Use Copy-and-Patch to generate code.
● Inline Caching as the only high-level optimization

○ As it is the only high-level optimization that can be performed without 
sacrificing startup delay

● However, many low-level optimizations
○ Runtime-constant propagation (aka, binding-time analysis)
○ Self-modifying-code-based IC implementation for best perf
○ Inline Slab optimization for IC
○ Hot-cold splitting
○ Tail-jump elimination
○ …



Baseline JIT Architecture (except Inline Caching)



Example: generated code for Add



Inline Caching

● “The most important optimization” —JavaScriptCore dev
● Key observation: certain values can be well-predicted

○ For code f(), “f” likely holds the same function
○ Many objects are used like C structs, so a property access site (e.g., 

“employee.name”) likely to see objects with the same “structure”.
● Cache the seen value and computation result at use site (“inline” caching)
● If next time we see the same value, can skip redundant computation

○ For call, can skip the check that the object is indeed a function, and the 
load of the code pointer from the function

○ For object property access, combined with hidden class, can skip the 
hash table lookup and directly know where the property is 



Inline Caching in Deegen

● Deegen understands calls, but not objects
○ Object semantics drastically differ per language
○ Impossible to provide a generic and ideal implementation
○ So should not be hardcoded by Deegen

● Call inline caching
○ Automatic in Deegen, no user intervention 

● Object property inline caching
○ Achieved by Generic Inline Caching API
○ Requires user to use the API to express IC semantics



Generic Inine Caching API



Generic Inine Caching API

● Idea: use C++ lambda to represent computation
● Body lambda

○ Represents the overall computation
● Effect lambda

○ Defined inside the body lambda, can have multiple
○ Represents an effectful computation

● That is, all computation in the body lambda must be idempotent. Effectful 
computation must be done within an effect lambda.



Inline Caching Example: TableGetById

● TableGetById
● Get a fixed string property from the table
● e.g., employee.name, animal.weight
● One of the most common operations on object.



The Body Lambda

Two Effect Lambdas

Value defined in body lambda
    Treated as result from
     idempotent computation

Value defined outside, 
sees fresh value every time



TableGetById: Interpreter Logic Disassembly
__deegen_interpreter_op_TableGetById_0_fused_ic_3:
    pushq    %rax
    movzwl   2(%r12), %eax              # decode the src slot from bytecode
    movq     (%rbp,%rax,8), %r9         # load the src TValue from stack
    cmpq     %r15, %r9                  # check if it is a heap entity
    jbe      .LBB5_9                    # if not, branch to slow path (omitted)
    movzwl   6(%r12), %r10d             # Decode the dst slot from bytecode
    movl     8(%r12), %edi          
    addq     %rbx, %rdi                 # Get metadata struct (holding the inline cache for this bytecode)
    movl     %gs:(%r9), %ecx            # Load hidden class (safe as we have checked it’s a heap entity)
    cmpl     %ecx, (%rdi)               # Check if inline cache hits
    jne      .LBB5_5                    # If not, branch to slow path (omitted)
    movslq   5(%rdi), %rax              # IC directly tells us the slot holding the property in the object
    movq     %gs:16(%r9,%rax,8), %rax   # Load that slot in the object
    movq     %rax, (%rbp,%r10,8)        # Store the result back to dst slot in the stack frame
    movzwl   12(%r12), %eax             # Dispatch to next bytecode
    addq     $12, %r12
    movq     __deegen_interpreter_dispatch_table(,%rax,8), %rax
    popq     %rcx
    jmpq     *%rax



Baseline JIT Inline Caching Design



Further Reading

● My Blog:
○ sillycross.github.io

● Blog post titles:
○ Building the fastest Lua interpreter automatically
○ Building a baseline JIT for Lua automatically

● LuaJIT Remake Github repo:
○ https://github.com/luajit-remake/luajit-remake


