Formal Checkers and Solvers for Hardware Design and Verification
Part I

Pono:
Performant, Adaptable, and Extensible
SMT-based Model Checking

Makai Mann
Ahmed Irfan
Florian Lonsing
Yahan Yang
Clark Barrett
Formal Verification

- Expensive or safety-critical failures
- Principled, exhaustive coverage
Model Checking

System Description S

Expected Behavior ϕ

Model Checker $S \models \phi$

Safe + invariant

Unsafe + witness
Model Checking

System Description S

Expected Behavior ϕ

Model Checker $S \models \phi$

Safe + invariant

Unsafe + witness

...
Some Directions for Model Checking

❖ Lift to Satisfiability Modulo Theories (SMT)

❖ New model checking algorithms

❖ Automatic / manual abstraction refinement approaches
Why SMT?

- Maintains structure of problem
- Abstractions with dedicated reasoning (e.g. arrays for memories)
- Quantified reasoning

Two directions:
- Faster SMT solvers
- Better use of SMT solvers
Pono

- Solver-agnostic SMT-based Model Checker

- “Pono”: right, correct, moral
Solver-agnostic Model Checker

- Solvers have different strengths
- New developments every year (showcased at SMT-COMP)
- Supporting multiple solvers good for:
 - Portfolio approaches
 - Utilizing union of supported features/strengths
Pono in AHA

❖ Property Checking + integration with Fault
❖ Lake mapping (up next!)
❖ AQED
❖ Future Uses:
 ❖ Counter abstraction
 ❖ SyGuS for rewriting
 ❖ …and more!
High Level Goals of Pono

❖ Performant
❖ Adaptable
❖ Extensible
Performant

- Competitive implementations of standard model checking algorithms
 - BMC
 - BMC + simple path
 - K-Induction
 - Interpolant-based
 - IC3 (in progress)
Performant

- Favorable performance compared to CoSA
- Competed as “Cosa2” in Hardware Model Checking Competition 2019

Results

In the SINGLE bit-vector track the top three places are:

1. **AVR**
 Aman Goel, Karem Sakallah (University of Michigan)

2. **CoSA2**
 Makai Mann, Ahmed Irfan, Florian Lonsing, Clark Barrett (Stanford University)

3. **CoNPS-btormc-THP**
 Norbert Manthey (hobbyist, former postdoc @ TU Dresden)

In the SINGLE bit-vector+array track the top three places are:

1. **CoSA2**
 Makai Mann, Ahmed Irfan, Florian Lonsing, Clark Barrett (Stanford University)

2. **AVR**
 Aman Goel, Karem Sakallah (University of Michigan)

3. **CoNPS-btormc-THP**
 Norbert Manthey (hobbyist, former postdoc @ TU Dresden)

Oski Award

CoSA2 for solving the largest number of benchmarks overall.
Adaptable

- Limitations of a black box
- Translation step very important
- Not always easily reducible to invariant checking
- Integrated verification — not a new idea, but hard to do right in practice
- Flexible API for solving diverse problems
Extensible

- Adaptability for users
- Extensibility for developers
- Infrastructure
- Open-source and simple
- Serve as a research platform for experts
Demo

- Checking invariant of memory with a predicate over all stored data

- SMT abstractions
 - Represent memory with an array
 - Quantifiers
 - Uninterpreted function to represent an arbitrary predicate
 - (Could also abstract index using unbounded integers)
Next Up: SMT Improvements